Fiche publication


Date publication

février 2015

Auteurs

Membres identifiés du Cancéropôle Est :
Pr GHIRINGHELLI François


Tous les auteurs :
Madouri F, Guillou N, Fauconnier L, Marchiol T, Rouxel N, Chenuet P, Ledru A, Apetoh L, Ghiringhelli F, Chamaillard M, Zheng SG, Trovero F, Quesniaux VF, Ryffel B, Togbe D

Résumé

The cysteine protease caspase-1 (Casp-1) contributes to innate immunity through the assembly of NLRP3, NLRC4, AIM2, and NLRP6 inflammasomes. Here we asked whether caspase-1 activation plays a regulatory role in house dust mite (HDM)-induced experimental allergic airway inflammation. We report enhanced airway inflammation in caspase-1-de fi cient mice exposed to HDM with a marked eosinophil recruitment, increased expression of IL-4, IL-5, IL-13, as well as full-length and bioactive IL-33. Furthermore, mice deficient for NLRP3 failed to control eosinophil influx in the airways and displayed augmented Th2 cytokine and chemokine levels, suggesting that the NLPR3 inflammasome complex controls HDM-induced inflammation. IL-33 neutralization by administration of soluble ST2 receptor inhibited the enhanced allergic inflammation, while administration of recombinant IL-33 during challenge phase enhanced allergic inflammation in caspase-1-deficient mice. Therefore, we show that caspase-1, NLRP3, and ASC, but not NLRC4, contribute to the upregulation of allergic lung inflammation. Moreover, we cannot exclude an effect of caspase-11, because caspase-1-deficient mice are deficient for both caspases. Mechanistically, absence of caspase-1 is associated with increased expression of IL-33, uric acid, and spleen tyrosine kinase (Syk) production. This study highlights a critical role of caspase-1 activation and NLPR3/ASC inflammasome complex in the down-modulation of IL-33 in vivo and in vitro, thereby regulating Th2 response in HDM-induced allergic lung in fl ammation.

Référence

J Mol Cell Biol. 2015 Feb 24. pii: mjv012.