Fiche publication
Date publication
août 2008
Auteurs
Membres identifiés du Cancéropôle Est :
Pr PETIT Jean-Michel
Tous les auteurs :
Verges B, Florentin E, Baillot-Rudoni S, Monier S, Petit JM, Rageot D, Gambert P, Duvillard L
Lien Pubmed
Résumé
AIMS/HYPOTHESIS: In addition to its efficacy in reducing LDL-cholesterol, rosuvastatin has been shown to significantly decrease plasma triacylglycerol. The use of rosuvastatin may be beneficial in patients with type 2 diabetes, who usually have increased triacylglycerol levels. However, its effects on the metabolism of triacylglycerol-rich lipoproteins in type 2 diabetic patients remains unknown. METHODS: We performed a randomised double-blind crossover trial of 6-week treatment with placebo or rosuvastatin 20 mg in eight patients with type 2 diabetes who were being treated with oral glucose-lowering agents. In each patient, an in vivo kinetic study of apolipoprotein B (ApoB)-containing lipoproteins with [13C]leucine was performed at the end of each treatment period. A central randomisation centre used computer-generated tables to allocate treatments. Participants, caregivers and those assessing the outcomes were blinded to group assignment. RESULTS: Rosuvastatin 20 mg significantly reduced plasma LDL-cholesterol, triacylglycerol and total ApoB. It also significantly reduced ApoB pool sizes of larger triacylglycerol-rich VLDL particles (VLDL1; p = 0.011), smaller VLDL particles (VLDL2; p = 0.011), intermediate density lipoprotein (IDL; p = 0.011) and LDL (p = 0.011). This reduction was associated with a significant increase in the total fractional catabolic rate of VLDL1-ApoB (6.70 +/- 3.24 vs 4.52 +/- 2.34 pool/day, p = 0.049), VLDL2-ApoB (8.72 +/- 3.37 vs 5.36 +/- 2.64, p = 0.011), IDL-ApoB (7.06 +/- 1.68 vs 4.21 +/- 1.51, p = 0.011) and LDL-ApoB (1.02 +/- 0.27 vs 0.59 +/- 0.13, p = 0.011). Rosuvastatin did not change the production rates of VLDL2-, IDL- or LDL-, but did reduce VLDL1-ApoB production rate (12.4 +/- 4.5 vs 19.5 +/- 8.4 mg kg(-1) day(-1), p = 0.035). No side effects of rosuvastatin were observed during the study. CONCLUSIONS/INTERPRETATION: In type 2 diabetic patients rosuvastatin 20 mg not only induces a significant increase of LDL-ApoB catabolism (73%), but also has favourable effects on the catabolism of triacylglycerol-rich lipoproteins, e.g. a significant increase in the catabolism of VLDL1-ApoB (48%), VLDL2-ApoB (63%) and IDL-ApoB (68%), and a reduction in the production rate of VLDL1-ApoB (-36%). The effects of rosuvastatin on the metabolism of triacylglycerol-rich lipoproteins may be beneficial for prevention of atherosclerosis in type 2 diabetic patients.
Référence
Diabetologia. 2008 Aug;51(8):1382-90