Fiche publication


Date publication

novembre 2007

Auteurs

Membres identifiés du Cancéropôle Est :
Pr NOEL Georges


Tous les auteurs :
Feuvret L, Noel G, Weber DC, Pommier P, Ferrand R, De Marzi L, Dhermain F, Alapetite C, Mammar H, Boisserie G, Habrand JL, Mazeron JJ

Résumé

PURPOSE: To compare treatment planning between combined photon-proton planning (CP) and proton planning (PP) for skull base tumors, so as to assess the potential limitations of CP for these tumors. METHODS AND MATERIALS: Plans for 10 patients were computed for both CP and PP. Prescribed dose was 67 cobalt Gray equivalent (CGE) for PP; 45 Gy (photons) and 22 CGE (protons) for CP. Dose-volume histograms (DVHs) were calculated for gross target volume (GTV), clinical target volume (CTV), normal tissues (NT), and organs at risk (OARs) for each plan. Results were analyzed using DVH parameters, inhomogeneity coefficient (IC), and conformity index (CI). RESULTS: Mean doses delivered to the GTVs and CTVs with CP (65.0 and 61.7 CGE) and PP (65.3 and 62.2 Gy CGE) were not significantly different (p > 0.1 and p = 0.72). However, the dose inhomogeneity was drastically increased with CP, with a mean significant incremental IC value of 10.5% and CP of 6.8%, for both the GTV (p = 0.01) and CTV (p = 0.04), respectively. The CI(80%) values for the GTV and CTV were significantly higher with PP compared with CP. Compared with CP, the use of protons only led to a significant reduction of NT and OAR irradiation, in the intermediate-to-low dose (< or =80% isodose line) range. CONCLUSIONS: These results suggest that the use of CP results in levels of target dose conformation similar to those with PP. Use of PP significantly reduced the tumor dose inhomogeneity and the delivered intermediate-to-low dose to NT and OARs, leading us to conclude that this treatment is mainly appropriate for tumors in children.

Référence

Int J Radiat Oncol Biol Phys. 2007 Nov 1;69(3):944-54.