Fiche publication
Date publication
mars 2007
Auteurs
Membres identifiés du Cancéropôle Est :
Pr MELY Yves
Tous les auteurs :
Klymchenko AS, Kenfack C, Duportail G, Mely Y
Résumé
3-Hydroxychromones (3HC), exhibit dual emissions highly sensitive to solvent properties due to excited state intramolecular proton transfer (ESIPT). Therefore, 3HCs find wide applications as fluorescence probes in biological systems. Here, it is particularly important to understand the fluorescence behaviour of 3HCs in polar environments. Herein, we studied 3-hydroxyflavone, 2-(2-furyl)-3-hydroxychromone and 2-(2-benzofuryl)-3-hydroxychromone in high polarity solvents characterized by different H-bond donor abilities, donor concentrations and acceptor abilities. Our results show that the dual emissions of the dyes are insensitive to solvent basicity but strongly depend on the two other parameters. Moreover, furyl- and benzofuryl-substituted dyes were significantly more sensitive than the 3-hydroxyflavone to H-bond donor ability, while all three dyes showed roughly equivalent high sensitivity to H-bond donor concentration. These results can be explained by different mechanisms. Thus, the sensitivity of all three dyes to increasing concentrations of H-bond donors probably results from increase in the population of solvated dye with disrupted intramolecular H-bonds. Meantime, the sensitivity to H-bond donor ability of the solvent, observed mainly with furyl- and benzofuryl dyes, is probably related to the strength of the H-bonds between the solvent and the 4-carbonyl group of the dye with intact intramolecular H-bonds. The present results provide new insights for further applications of 3HC derivatives as environment-sensitive probes and labels of biological molecules.
Référence
J Chem Sci. 2007 Mar;119(2):83-9.