Fiche publication
Date publication
janvier 2007
Auteurs
Membres identifiés du Cancéropôle Est :
Pr BAUMERT Thomas
Tous les auteurs :
Lucas M, Ulsenheimer A, Pfafferot K, Heeg MH, Gaudieri S, Gruner N, Rauch A, Gerlach JT, Jung MC, Zachoval R, Pape GR, Schraut W, Santantonio T, Nitschko H, Obermeier M, Phillips R, Scriba TJ, Semmo N, Day C, Weber JN, Fidler S, Thimme R, Haberstroh A, Baumert TF, Klenerman P, Diepolder HM
Lien Pubmed
Résumé
BACKGROUND: CD4+ T cell help is critical in maintaining antiviral immune responses and such help has been shown to be sustained in acute resolving hepatitis C. In contrast, in evolving chronic hepatitis C CD4+ T cell helper responses appear to be absent or short-lived, using functional assays. METHODOLOGY/PRINCIPAL FINDINGS: Here we used a novel HLA-DR1 tetramer containing a highly targeted CD4+ T cell epitope from the hepatitis C virus non-structural protein 4 to track number and phenotype of hepatitis C virus specific CD4+ T cells in a cohort of seven HLA-DR1 positive patients with acute hepatitis C in comparison to patients with chronic or resolved hepatitis C. We observed peptide-specific T cells in all seven patients with acute hepatitis C regardless of outcome at frequencies up to 0.65% of CD4+ T cells. Among patients who transiently controlled virus replication we observed loss of function, and/or physical deletion of tetramer+ CD4+ T cells before viral recrudescence. In some patients with chronic hepatitis C very low numbers of tetramer+ cells were detectable in peripheral blood, compared to robust responses detected in spontaneous resolvers. Importantly we did not observe escape mutations in this key CD4+ T cell epitope in patients with evolving chronic hepatitis C. CONCLUSIONS/SIGNIFICANCE: During acute hepatitis C a CD4+ T cell response against this epitope is readily induced in most, if not all, HLA-DR1+ patients. This antiviral T cell population becomes functionally impaired or is deleted early in the course of disease in those where viremia persists.
Référence
PLoS One. 2007 Jul 25;2(7):e649.