Fiche publication


Date publication

janvier 2007

Auteurs

Membres identifiés du Cancéropôle Est :
Dr MARCHIONI Eric


Tous les auteurs :
Roussi S, Gosse F, Aoude-Werner D, Zhang X, Marchioni E, Geoffroy P, Miesch M, Raul F

Résumé

We reported previously that 7beta-hydroxysitosterol and 7beta-hydroxycholesterol induced apoptosis in Caco-2 cells. Apoptosis caused by 7beta-hydroxysitosterol but not by 7beta-hydroxycholesterol was related to a caspase-dependent process. In the present report, we compared the effects of both compounds on mitochondria integrity and on various modulators of apoptosis. When Caco-2 cells were exposed to both hydroxysterols, no changes in Bcl-2 and Bax expressions were detected indicating a Bcl-2/Bax-independent cell death pathway, whereas loss of mitochondrial membrane potential and cytochrome c release were observed. Endonuclease G expression and enhanced production of reactive oxygen species were detected in 7beta-hydroxycholesterol treated cells, but not with 7beta-hydroxysitosterol. Loss of mitochondrial membrane potential and cell death produced by both hydroxysterols were prevented by vitamin C. Lysosomal membrane integrity was altered with both hydroxysterols, but 7beta-hydroxysitosterol was significantly more active on than 7beta-hydroxycholesterol. Both hydroxysterols induced apoptosis by mitochondrial membrane permeabilization. However, 7beta-hydroxycholesterol exhibited a specific enhancement of oxidative stress and of endonuclease G expression despite its closely related chemical structure with 7beta-hydroxysitosterol. The two hydroxysterols exhibit different lipophilic properties which may explain their different biological effects.

Référence

Apoptosis. 2007 Jan;12(1):87-96.