Fiche publication
Date publication
février 2006
Auteurs
Membres identifiés du Cancéropôle Est :
Dr ROCHETTE-EGLY Cécile
Tous les auteurs :
Gianni M, Parrella E, Raska I Jr, Gaillard E, Nigro EA, Gaudon C, Garattini E, Rochette-Egly C
Lien Pubmed
Résumé
Nuclear retinoic acid (RA) receptors (RARs) activate gene expression through dynamic interactions with coregulators in coordination with the ligand and phosphorylation processes. Here we show that during RA-dependent activation of the RARalpha isotype, the p160 coactivator pCIP/ACTR/AIB-1/RAC-3/TRAM-1/SRC-3 is phosphorylated by p38MAPK. SRC-3 phosphorylation has been correlated to an initial facilitation of RARalpha-target genes activation, via the control of the dynamics of the interactions of the coactivator with RARalpha. Then, phosphorylation inhibits transcription via promoting the degradation of SRC-3. In line with this, inhibition of p38MAPK markedly enhances RARalpha-mediated transcription and RA-dependent induction of cell differentiation. SRC-3 phosphorylation and degradation occur only within the context of RARalpha complexes, suggesting that the RAR isotype defines a phosphorylation code through dictating the accessibility of the coactivator to p38MAPK. We propose a model in which RARalpha transcriptional activity is regulated by SRC-3 through coordinated events that are fine-tuned by RA and p38MAPK.
Référence
EMBO J. 2006 Feb 22;25(4):739-51