Fiche publication
Date publication
mars 2005
Auteurs
Membres identifiés du Cancéropôle Est :
Dr VOEGEL Jean-Claude
Tous les auteurs :
Etienne O, Schneider A, Taddei C, Richert L, Schaaf P, Voegel JC, Egles C, Picart C
Lien Pubmed
Résumé
Biomedical devices and modified biomaterial surfaces constitute an expanding research domain in the dental field. However, such oral applications have to face a very particular environment containing specific physiological conditions and specific enzymes. To evaluate their suitability in the development of novel oral applications, the degradability of polyelectrolyte multilayer films made of the natural polysaccharides chitosan and hyaluronan (CHI/HA) was investigated in vitro and in vivo in a rat mouth model. The films were either native or cross-linked using a water-soluble carbodiimide (EDC) in combination with N-hydroxysulfosuccinimide. The in vitro degradation of the films by different enzymes present in the oral environment, such as lysozyme and amylase, was followed by quartz crystal microbalance measurements and confocal laser scanning microscopy observations after being film labeled with CHI(FITC). Whereas native films were subjected to degradation by all the enzymes, cross-linked films were more resistant to enzymatic degradation. Films were also put in contact with whole saliva, which induced a slow degradation of the native films over an 18 h period. The in vivo degradation of the films deposited on polymer disks and sutured in the rat mouth was followed over a 3 day period. Whereas film degradation is fast for native films, it is much slower for the cross-linked ones. More than 60% of these films remained on the disks after 3 days in the mouth. Taken together, these results suggest that the multilayer films made of natural polysaccharides are of high potential interest for oral applications, especially as drug release systems, offering various degradation rates and consequent release characteristics.
Référence
Biomacromolecules. 2005 Mar-Apr;6(2):726-33.