Fiche publication


Date publication

janvier 2005

Auteurs

Membres identifiés du Cancéropôle Est :
Dr MORAS Dino , Dr BILLAS Isabelle


Tous les auteurs :
Billas IM, Moras D

Résumé

The ecdysone receptor (EcR) belongs to the superfamily of nuclear receptors (NRs) that are ligand-dependent transcription factors. Ecdysone receptor is present only in invertebrates and plays a central role in regulating the expression of a vast array of genes during development and reproduction. The functional entity is a heterodimer composed of EcR and the ultraspiracle protein (USP)-the orthologue of the vertebrate retinoid X receptor (RXR). Ecdysone receptor is the molecular target of ecdysteroids-the endogenous steroidal molting hormones found in arthropods and nonarthropod invertebrates. In addition, EcR is the target of the environmentally safe bisacylhydrazine insecticides used against pests, such as caterpillars, that cause severe damage to agriculture. The crystal structures of the ligand-binding domains (LBDs) of the EcR/USP heterodimer, complexed to the ecdysteroid ponasterone A (ponA) and to the lepidopteran specific bisacylhydrazine BYI06830 used in the agrochemical pest control, provide the first insight at atomic level for these important functional complexes. The EcR/USP heterodimer has a shape similar to that seen for the known vertebrate heterodimer complexes with a conserved main interface, but with features, that are specific to this invertebrate heterodimer. The two EcR-LBD structures in complex with steroidal and nonsteroidal ligands reveal substantial differences. The adaptability of EcR to its ligand results in two radically different and only partially overlapping ligand-binding pockets with different residues involved in ligand recognition. The concept brought by these structural studies of a ligand-dependent binding pocket has potential applications for other NRs.

Référence

Vitam Horm. 2005;73:101-29.