Fiche publication


Date publication

octobre 2003

Auteurs

Membres identifiés du Cancéropôle Est :
Pr HIBERT Marcel


Tous les auteurs :
Tahtaoui C, Balestre MN, Klotz P, Rognan D, Barberis C, Mouillac B, Hibert M

Résumé

To identify the binding site of the human V1a vasopressin receptor for the selective nonpeptide antagonist SR49059, we have developed a site-directed irreversible labeling strategy that combines mutagenesis of the receptor and use of sulfydryl-reactive ligands. Based on a three-dimensional model of the antagonist docked into the receptor, hypothetical ligand-receptor interactions were investigated by replacing the residues potentially involved in the binding of the antagonist into cysteines and designing analogues of SR49059 derivatized with isothiocyanate or alpha-chloroacetamide moieties. The F225C, F308C, and K128C mutants of the V1a receptor were expressed in COS-7 or Chinese hamster ovary cells, and their pharmacological properties toward SR49059 and its sulfydryl-reactive analogues were analyzed. We demonstrated that treatment of the F225C mutant with the isothiocyanate-derivative compound led to dose-dependent inhibition of the residual binding of the radio-labeled antagonist [125I]HO-LVA. This inhibition is probably the consequence of a covalent irreversible chemical modification, which is only possible when close contacts and optimal orientations exist between reactive groups created both on the ligand and the receptor. This result validated the three-dimensional model hypothesis. Thus, we propose that residue Phe225, located in transmembrane domain V, directly participates in the binding of the V1a-selective nonpeptide antagonist SR49059. This conclusion is in complete agreement with all our previous data on the definition of the agonist/antagonist binding to members of the oxytocin/vasopressin receptor family.

Référence

J Biol Chem. 2003 Oct 10;278(41):40010-9