Fiche publication
Date publication
juin 2018
Journal
Archives of toxicology
Auteurs
Membres identifiés du Cancéropôle Est :
Dr HERAULT Yann
Tous les auteurs :
Kim YH, Noh JR, Hwang JH, Kim KS, Choi DH, Kim JH, Moon SJ, Choi JH, Hérault Y, Lee TG, Choi HS, Lee CH
Lien Pubmed
Résumé
Acetaminophen (APAP) overdose is a leading cause of drug-induced acute liver failure. Prolonged c-Jun N-terminal kinase (JNK) activation plays a central role in APAP-induced liver injury; however, growth arrest and DNA damage-inducible 45 beta (GADD45β) is known to inhibit JNK phosphorylation. The orphan nuclear receptor small heterodimer partner (SHP, NR0B2) acts as a transcriptional co-repressor of various genes. The aim of the present study was to investigate the role of SHP in APAP-evoked hepatotoxicity. We used lethal (750 mg/kg) or sublethal (300 mg/kg) doses of APAP-treated wild-type (WT), Shp knockout (Shp), hepatocyte-specific Shp knockout (Shp), and Shp and Gadd45β double knockout (ShpGadd45β) mice for in vivo studies. Primary mouse hepatocytes were used for a comparative in vitro study. SHP deficiency protected against APAP toxicity with an increased survival rate, decreased liver damage, and inhibition of prolonged hepatic JNK phosphorylation in mice, which was independent of APAP metabolism regulation. Furthermore, Shp mice showed diminished APAP hepatotoxicity compared with WT mice. SHP-deficient primary mouse hepatocytes also showed decreased cell death and inhibition of sustained JNK phosphorylation following toxic APAP treatment. While SHP expression declined, GADD45β expression increased after APAP treatment in WT mice. In Shp mice, APAP-evoked GADD45β induction was significantly enhanced. Notably, the ameliorative effects of SHP deficiency on APAP-induced liver injury were abolished in ShpGadd45β mice. The current study is the first to demonstrate that hepatocyte-specific SHP deficiency protects against APAP overdose-evoked hepatotoxicity in a JNK signaling regulation and GADD45β dependent manner. SHP is suggested to be a novel therapeutic target for APAP overdose treatment.
Mots clés
Acetaminophen, GADD45β, Hepatotoxicity, JNK, SHP
Référence
Arch. Toxicol.. 2018 Jun 25;: