Fiche publication


Date publication

septembre 2018

Journal

Journal of dental research

Auteurs

Membres identifiés du Cancéropôle Est :
Dr BENKIRANE-JESSEL Nadia , Dr IDOUX-GILLET Ysia


Tous les auteurs :
Strub M, Keller L, Idoux-Gillet Y, Lesot H, Clauss F, Benkirane-Jessel N, Kuchler-Bopp S

Résumé

Transplantation of bone marrow mesenchymal stem cells (BMDCs) into a denervated side of the spinal cord was reported to be a useful option for axonal regeneration. The innervation of teeth is essential for their function and protection but does not occur spontaneously after injury. Cultured reassociations between dissociated embryonic dental mesenchymal and epithelial cells and implantation lead to a vascularized tooth organ regeneration. However, when reassociations were coimplanted with a trigeminal ganglion (TG), innervation did not occur. On the other hand, reassociations between mixed embryonic dental mesenchymal cells and bone marrow-derived cells isolated from green fluorescent protein (GFP) transgenic mice (BMDCs-GFP) (50/50) with an intact and competent dental epithelium (ED14) were innervated. In the present study, we verified the stemness of isolated BMDCs, confirmed their potential role in the innervation of bioengineered teeth, and analyzed the mechanisms by which this innervation can occur. For that purpose, reassociations between mixed embryonic dental mesenchymal cells and BMDCs-GFP with an intact and competent dental epithelium were cultured and coimplanted subcutaneously with a TG for 2 wk in ICR mice. Axons entered the dental pulp and reached the odontoblast layer. BMDCs-GFP were detected at the base of the tooth, with some being present in the pulp associated with the axons. Thus, while having a very limited contribution in tooth formation, they promoted the innervation of the bioengineered teeth. Using quantitative reverse transcription polymerase chain reaction and immunostainings, BMDCs were shown to promote innervation by 2 mechanisms: 1) via immunomodulation by reducing the number of T lymphocytes (CD3+, CD25+) in the implants and 2) by expressing neurotrophic factors such as NGF, BDNF, and NT3 for axonal growth. This strategy using autologous mesenchymal cells coming from bone marrow could be used to innervate bioengineered teeth without treatment with an immunosuppressor such as cyclosporine A (CsA), thus avoiding multiple side effects.

Mots clés

axons, cell differentiation, mesenchymal stromal cells, odontogenesis, tissue engineering, trigeminal ganglia

Référence

J. Dent. Res.. 2018 Sep;97(10):1152-1159