Fiche publication
Date publication
janvier 2019
Journal
ACS applied materials & interfaces
Auteurs
Membres identifiés du Cancéropôle Est :
Pr BEGIN-COLIN Sylvie
,
Mme MESSADDEQ Nadia
,
Dr MERTZ Damien
,
Dr ANTON Halina
Tous les auteurs :
Wallyn J, Anton N, Mertz D, Begin-Colin S, Perton F, Serra CA, Franconi F, Lemaire L, Chiper M, Libouban H, Messaddeq N, Anton H, Vandamme TF
Lien Pubmed
Résumé
Noninvasive diagnostic by imaging combined with a contrast agent (CA) is by now the most used technique to get insight into human bodies. X-ray and magnetic resonance imaging (MRI) are widely used technologies providing complementary results. Nowadays, it seems clear that bimodal CAs could be an emerging approach to increase the patient compliance, accessing different imaging modalities with a single CA injection. Owing to versatile designs, targeting properties, and high payload capacity, nanocarriers are considered as a viable solution to reach this goal. In this study, we investigated efficient superparamagnetic iron oxide nanoparticle (SPION)-loaded iodinated nano-emulsions (NEs) as dual modal injectable CAs for X-ray imaging and MRI. The strength of this new CA lies not only in its dual modal contrasting properties and biocompatibility, but also in the simplicity of the nanoparticulate assembling: iodinated oily core was synthesized by the triiodo-benzene group grafting on vitamin E (41.7% of iodine) via esterification, and SPIONs were produced by thermal decomposition during 2, 4, and 6 h to generate SPIONs with different morphologies and magnetic properties. SPIONs with most anisotropic shape and characterized by the highest r/ r ratio once encapsulated into iodinated NE were used for animal experimentation. The in vivo investigation showed an excellent contrast modification because of the presence of the selected NEs, for both imaging techniques explored, that is, MRI and X-ray imaging. This work provides the description and in vivo application of a simple and efficient nanoparticulate system capable of enhancing contrast for both preclinical imaging modalities, MRI, and computed tomography.
Mots clés
MRI, SPIONs, bimodal nano-emulsion, in vivo imaging, iodinated oil, micro-CT
Référence
ACS Appl Mater Interfaces. 2019 Jan 9;11(1):403-416