Fiche publication


Date publication

août 2019

Journal

Seminars in cancer biology

Auteurs

Membres identifiés du Cancéropôle Est :
Dr BREZILLON Stéphane


Tous les auteurs :
Karamanou K, Franchi M, Vynios D, Brézillon S

Résumé

A great hallmark of breast cancer is the absence or presence of estrogen receptors ERα and ERβ, with a dominant role in cell proliferation, differentiation and cancer progression. Both receptors are related with Epithelial-to-Mesenchymal Transition (EMT) since there is a relation between ERs and extracellular matrix (ECM) macromolecules expression, and therefore, cell-cell and cell-ECM interactions. The endocrine resistance of ERα endows epithelial cells with increased aggressiveness and induces cell proliferation, resulting into a mesenchymal phenotype and an EMT status. ERα signaling may affect the transcriptional factors which govern EMT. Knockdown or silencing of ERα and ERβ in MCF-7 and MDA-MB-231 breast cancer cells respectively, provoked pivotal changes in phenotype, cellular functions, mRNA and protein levels of EMT markers, and consequently the EMT status. Mesenchymal cells owe their migratory and invasive properties to invadopodia, while in epithelial cells, lamellipodia and filopodia are mostly observed. Invadopodia, are actin-rich protrusions of plasma membrane, promoting proteolytic degradation of ECM and tumor invasion. Cortactin and MMP-14 govern the formation and principal functions of invadopodia. In vitro experiments proved that lumican inhibits cortactin and MMP-14 expression, alters the formation of lamellipodia and transforms mesenchymal cells into epithelial-like. Conclusively, lumican may inhibit or even reverse the several metastatic features that EMT endows in breast cancer cells. Therefore, a lumican-based anti-cancer therapy which will pharmacologically target and inhibit EMT might be interesting to be developed.

Mots clés

EMT, breast cancer, invadopodia, lumican

Référence

Semin. Cancer Biol.. 2019 Aug 8;: