Fiche publication
Date publication
février 2020
Journal
Journal of pharmaceutical and biomedical analysis
Auteurs
Membres identifiés du Cancéropôle Est :
Dr CIANFERANI Sarah
Tous les auteurs :
Wagner E, Colas O, Chenu S, Goyon A, Murisier A, Cianferani S, François Y, Fekete S, Guillarme D, D'Atri V, Beck A
Lien Pubmed
Résumé
In the present work, a generic non-reducing capillary electrophoresis sodium dodecyl sulphate (nrCE-SDS) method was tested for a wide range of 26 FDA and EMA approved monoclonal antibodies (mAbs) and 2 antibody drug conjugates (ADCs) as well as for the NISTmab, in a QC environment (e.g. testing quality requirements for batch manufacturing or batch release). This method allows obtaining rapidly and accurately the amount of size variants in drug products within about 40 min and may be used for batch release and consistency as well as for stability and shelf-life. First, the method repeatability was found to be excellent in terms of relative migration times and relative proportions of fragments (average RSD values of 0.3 and 0.2 %, on relative migration times and relative percentages of fragments, respectively), thanks to the addition of an internal standard. A panel of chimeric, humanized and human mAbs were tested, belonging to different subclasses (heavy chain gamma 1, 2, 2/4 and 4) and light chain types (κ or λ) and produced in different cell lines (CHO, NS0 and SP2/0). For all these biopharmaceutical products, the amount of H2L2 species was comprised between 90.9 % and 97.7 %, except for the two mAbs belonging to the IgG1λ subclass, namely avelumab and belimumab, which were prone to partial reduction during the sample preparation at 70 °C. Based on the CE-SDS results obtained for a diverse panel of therapeutic antibodies investigated in this study, and covering a wide range of structural and physico-chemical properties, a specification on the intact antibody content (H2L2) greater than 90 % can be achieved.
Mots clés
CE-SDS, Low molecular weight species, Pharmacopeia method, Quality control, Size variants
Référence
J Pharm Biomed Anal. 2020 Feb 10;184:113166