Fiche publication
Date publication
mars 2019
Journal
Oncotarget
Auteurs
Membres identifiés du Cancéropôle Est :
Pr FEUGEAS Jean-Paul
Tous les auteurs :
Louveau B, Delyon J, De Moura CR, Battistella M, Jouenne F, Golmard L, Sadoux A, Podgorniak MP, Chami I, Marco O, Caramel J, Dalle S, Feugeas JP, Dumaz N, Lebbe C, Mourah S
Lien Pubmed
Résumé
Several mechanisms have been described to elucidate the emergence of resistance to MAPK inhibitors in melanoma and there is a crucial need for biomarkers to identify patients who are likely to achieve a better and long-lasting response to BRAF inhibitors therapy. In this study, we developed a targeted approach combining both mRNA and DNA alterations analysis focusing on relevant gene alterations involved in acquired BRAF inhibitor resistance. We collected baseline tumor samples from 64 melanoma patients at BRAF inhibitor treatment initiation and showed that the presence, prior to treatment, of mRNA over-expression of genes' subset was significantly associated with improved progression free survival and overall survival. The presence of DNA alterations was in favor of better overall survival. The genomic analysis of relapsed-matched tumor samples from 20 patients allowed us to uncover the largest landscape of resistance mechanisms reported to date as at least one resistance mechanism was identified for each patient studied. Alterations in have been most frequent and hence represent an important additional acquired resistance mechanism. Our targeted genomic analysis emerges as a relevant tool in clinical practice to identify those patients who are more likely to achieve durable response to targeted therapies and to exhaustively describe the spectrum of resistance mechanisms. Our approach can be adapted to new targeted therapies by including newly identified genetic alterations.
Mots clés
BRAF inhibitors, melanoma, predictive analysis, targeted genomic alteration, targeted therapy resistance
Référence
Oncotarget. 2019 Mar 1;10(18):1669-1687