Fiche publication
Date publication
août 2020
Journal
Antibiotics (Basel, Switzerland)
Auteurs
Membres identifiés du Cancéropôle Est :
Pr GANGLOFF Sophie
Tous les auteurs :
Lamret F, Colin M, Mongaret C, Gangloff SC, Reffuveille F
Lien Pubmed
Résumé
The need for bone and joint prostheses is currently growing due to population aging, leading to an increase in prosthetic joint infection cases. Biofilms represent an adaptive and quite common bacterial response to several stress factors which confer an important protection to bacteria. Biofilm formation starts with bacterial adhesion on a surface, such as an orthopedic prosthesis, further reinforced by matrix synthesis. The biofilm formation and structure depend on the immediate environment of the bacteria. In the case of infection, the periprosthetic joint environment represents a particular interface between bacteria, host cells, and the implant, favoring biofilm initiation and maturation. Treating such an infection represents a huge challenge because of the biofilm-specific high tolerance to antibiotics and its ability to evade the immune system. It is crucial to understand these mechanisms in order to find new and adapted strategies to prevent and eradicate implant-associated infections. Therefore, adapted models mimicking the infectious site are of utmost importance to recreate a relevant environment in order to test potential antibiofilm molecules. In periprosthetic joint infections, is mainly involved because of its high adaptation to the human physiology. The current review deals with the mechanisms involved in the antibiotic resistance and tolerance of in the particular periprosthetic joint infection context, and exposes different strategies to manage these infections.
Mots clés
Staphylococcus aureus, antibiotic, biofilms, periprosthetic joint infections, resistance, tolerance
Référence
Antibiotics (Basel). 2020 Aug 27;9(9):