Fiche publication
Date publication
septembre 2020
Journal
IEEE transactions on medical imaging
Auteurs
Membres identifiés du Cancéropôle Est :
Pr BRUNOTTE François
,
Pr COCHET Alexandre
Tous les auteurs :
Courteau A, McGrath J, Walker PM, Pegg R, Martin G, Garipov R, Doughty P, Cochet A, Brunotte FC, Vrigneaud JM
Lien Pubmed
Résumé
We present the design and performance of a new compact preclinical system combining positron emission tomography (PET) and magnetic resonance imaging (MRI) for simultaneous scans. The PET contains sixteen SiPM-based detector heads arranged in two octagons and covers an axial field of view (FOV) of 102.5 mm. Depth of interaction effects and detector's temperature variations are compensated by the system. The PET is integrated in a dry magnet operating at 7 T. PET and MRI characteristics were assessed complying with international standards and interferences between both subsystems during simultaneous scans were addressed. For the rat size phantom, the peak noise equivalent count rates (NECR) were 96.4 kcps at 30.2 MBq and 132.3 kcps at 28.4 MBq respectively with and without RF coil. For mouse, the peak NECR was 300.0 kcps at 34.5 MBq and 426.9 kcps at 34.3 MBq respectively with and without coil. At the axial centre of the FOV, spatial resolutions expressed as full width at half maximum / full width at tenth maximum (FWHM/FWTM) ranged from 1.69/3.19 mm to 2.39/4.87 mm. The peak absolute sensitivity obtained with a 250-750 keV energy window was 7.5% with coil and 7.9% without coil. Spill over ratios of the NEMA NU4-2008 image quality (NEMA-IQ) phantom ranged from 0.25 to 0.96 and the percentage of non-uniformity was 5.7%. The image count versus activity was linear up to 40 MBq. The principal magnetic field variation was 0.03 ppm/mm over 40 mm. The qualitative and quantitative aspects of data were preserved during simultaneous scans.
Référence
IEEE Trans Med Imaging. 2020 Sep 21;PP: