Fiche publication


Date publication

novembre 2020

Journal

Diagnostic and interventional imaging

Auteurs

Membres identifiés du Cancéropôle Est :
Pr OHANA Mickaël


Tous les auteurs :
Blanc D, Racine V, Khalil A, Deloche M, Broyelle JA, Hammouamri I, Sinitambirivoutin E, Fiammante M, Verdier E, Besson T, Sadate A, Lederlin M, Laurent F, Chassagnon G, Ferretti G, Diascorn Y, Brillet PY, Cassagnes L, Caramella C, Loubet A, Abassebay N, Cuingnet P, Ohana M, Behr J, Ginzac A, Veyssiere H, Durando X, Bousaïd I, Lassau N, Brehant J

Résumé

The purpose of this study was to create an algorithm to detect and classify pulmonary nodules in two categories based on their volume greater than 100 mm or not, using machine learning and deep learning techniques.

Mots clés

Deep learning, Lung cancer, Machine learning., Pulmonary nodule, Support vector machine

Référence

Diagn Interv Imaging. 2020 Nov 6;: