Fiche publication
Date publication
janvier 2021
Journal
The Journal of biological chemistry
Auteurs
Membres identifiés du Cancéropôle Est :
Dr KREZEL Wojciech
Tous les auteurs :
Klyuyeva AV, Belyaeva OV, Goggans KR, Krezel W, Popov KM, Kedishvili NY
Lien Pubmed
Résumé
Liver is the central metabolic hub that coordinates carbohydrate and lipid metabolism. The bioactive derivative of vitamin A, retinoic acid (RA) was shown to regulate major metabolic genes including phosphoenolpyruvate carboxykinase, fatty acid synthase, carnitine palmitoyltransferase 1, and glucokinase among others. Expression levels of these genes undergo profound changes during adaptation to fasting, or in metabolic diseases such as type 1 diabetes (T1D). However, it is unknown whether the levels of hepatic RA change during metabolic remodeling. This study investigated the dynamics of hepatic retinoid metabolism and signaling in the fed state, in fasting, and in T1D. Our results show that fed-to-fasted transition is associated with significant decrease in hepatic retinol dehydrogenase (RDH) activity, the rate-limiting step in RA biosynthesis, and downregulation of RA signaling. The decrease in RDH activity correlates with the decreased abundance and altered subcellular distribution of RDH10 while Rdh10 transcript levels remain unchanged. In contrast to fasting, untreated T1D is associated with upregulation of RA signaling and an increase in hepatic RDH activity, which correlates with the increased abundance of RDH10 in microsomal membranes. The dynamic changes in RDH10 protein levels in the absence of changes in its transcript levels imply the existence of post-transcriptional regulation of RDH10 protein. Together, these data suggest that the downregulation of hepatic RA biosynthesis, in part via the decrease in RDH10, is an integral component of adaptation to fasting. In contrast, the upregulation of hepatic RA biosynthesis and signaling in T1D might contribute to metabolic inflexibility associated with this disease.
Mots clés
DHRS3, RDH10, dehydrogenase, fasting, lipid droplets, liver, reductase, retinaldehyde, retinoic acid, retinol, vitamin A
Référence
J Biol Chem. 2021 Jan 21;:100323