Fiche publication


Date publication

janvier 2014

Auteurs

Membres identifiés du Cancéropôle Est :
Pr PETIT Jean-Michel , Mme TRUNTZER Caroline


Tous les auteurs :
Truntzer C, Mostacci E, Jeannin A, Petit JM, Ducoroy P, Cardot H

Résumé

BACKGROUND: The identification of new diagnostic or prognostic biomarkers is one of the main aims of clinical cancer research. Technologies like mass spectrometry are commonly being used in proteomic research. Mass spectrometry signals show the proteomic profiles of the individuals under study at a given time. These profiles correspond to the recording of a large number of proteins, much larger than the number of individuals. These variables come in addition to or to complete classical clinical variables. The objective of this study is to evaluate and compare the predictive ability of new and existing models combining mass spectrometry data and classical clinical variables. This study was conducted in the context of binary prediction. RESULTS: To achieve this goal, simulated data as well as a real dataset dedicated to the selection of proteomic markers of steatosis were used to evaluate the methods. The proposed methods meet the challenge of high-dimensional data and the selection of predictive markers by using penalization methods (Ridge, Lasso) and dimension reduction techniques (PLS), as well as a combination of both strategies through sparse PLS in the context of a binary class prediction. The methods were compared in terms of mean classification rate and their ability to select the true predictive values. These comparisons were done on clinical-only models, mass-spectrometry-only models and combined models. CONCLUSIONS: It was shown that models which combine both types of data can be more efficient than models that use only clinical or mass spectrometry data when the sample size of the dataset is large enough.

Référence

BMC Bioinformatics. 2014 Nov 29;15:385