Fiche publication
Date publication
février 2021
Journal
NMR in biomedicine
Auteurs
Membres identifiés du Cancéropôle Est :
Pr BARBERI-HEYOB Muriel
,
Pr KARCHER Gilles
,
Dr BEAUMONT Marine
,
Pr GAUCHOTTE Guillaume
,
Pr VERGER Antoine
Tous les auteurs :
Clément A, Doyen M, Fauvelle F, Hossu G, Chen B, Barberi-Heyob M, Hirtz A, Stupar V, Lamiral Z, Pouget C, Gauchotte G, Karcher G, Beaumont M, Verger A, Lemasson B
Lien Pubmed
Résumé
The physiological mechanism induced by the isocitrate dehydrogenase 1 (IDH1) mutation, associated with better treatment response in gliomas, remains unknown. The aim of this preclinical study was to characterize the IDH1 mutation through in vivo multiparametric MRI and MRS. Multiparametric MRI, including the measurement of blood flow, vascularity, oxygenation, permeability, and in vivo MRS, was performed on a 4.7 T animal MRI system in rat brains grafted with human-derived glioblastoma U87 cell lines expressing or not the IDH1 mutation by the CRISPR/Cas9 method, and secondarily characterized with additional ex vivo HR-MAS and histological analyses. In univariate analyses, compared with IDH1-, IDH1+ tumors exhibited higher vascular density (p < 0.01) and better perfusion (p = 0.02 for cerebral blood flow), but lower vessel permeability (p < 0.01 for time to peak (TTP), p = 0.04 for contrast enhancement) and decreased T map values (p = 0.02). Using linear discriminant analysis, vascular density and TTP values were found to be independent MRI parameters for characterizing the IDH1 mutation (p < 0.01). In vivo MRS and ex vivo HR-MAS analysis showed lower metabolites of tumor aggressiveness for IDH1+ tumors (p < 0.01). Overall, the IDH1 mutation exhibited a higher vascularity on MRI, a lower permeability, and a less aggressive metabolic profile. These MRI features may prove helpful to better pinpoint the physiological mechanisms induced by this mutation.
Mots clés
IDH1, glioma, multiparametric MRI, orthotopic, preclinical, spectroscopy
Référence
NMR Biomed. 2021 Feb 17;:e4490