Fiche publication
Date publication
septembre 2021
Journal
Journal of immunological methods
Auteurs
Membres identifiés du Cancéropôle Est :
Pr CHATTON Bruno
,
Dr DONZEAU Mariel
,
Dr NOMINE Yves
Tous les auteurs :
Dietsch F, Nominé Y, Stoessel A, Kostmann C, Bonhoure A, Chatton B, Donzeau M
Lien Pubmed
Résumé
Bivalent VHs have been shown to display better functional affinity compared with their monovalent counterparts. Bivalency can be achieved either by inserting a hinge region between both VHs units or by using modules that lead to dimerization. In this report, a small self-associating peptide originating from the tetramerization domain of p53 was developed as a tool for devicing nanobody dimerization. This E3 peptide was evaluated for the dimerization of an anti-eGFP nanobody (nano-eGFP-E3) whose activity was compared to a bivalent anti-eGFP constructed in tandem using GS rich linker. The benefit of bivalency in terms of avidity and specificity was assessed in different in vitro and in cellulo assays. In ELISA and SPR, the dimeric and tandem formats were nearly equivalent in terms of gain of avidity compared to the monovalent counterpart. However, in cellulo, the nano-eGFP-E3 construct showed its superiority over the tandem format in terms of specificity with a highest and better ratio signal-to-noise. All together, the E3 peptide provides a universal suitable tool for the construction of dimeric biomolecules, in particular antibody fragments with improved functional affinity.
Mots clés
Avidity, Bivalency, Dimerization domain, Peptide, V(H)Hs, p53
Référence
J Immunol Methods. 2021 Sep 2;:113144