Fiche publication
Date publication
janvier 2014
Auteurs
Membres identifiés du Cancéropôle Est :
Pr GUILLEMIN Francis
Tous les auteurs :
Sebille V, Blanchin M, Guillemin F, Falissard B, Hardouin JB
Lien Pubmed
Résumé
BACKGROUND: Despite the widespread use of patient-reported Outcomes (PRO) in clinical studies, their design remains a challenge. Justification of study size is hardly provided, especially when a Rasch model is planned for analysing the data in a 2-group comparison study. The classical sample size formula (CLASSIC) for comparing normally distributed endpoints between two groups has shown to be inadequate in this setting (underestimated study sizes). A correction factor (RATIO) has been proposed to reach an adequate sample size from the CLASSIC when a Rasch model is intended to be used for analysis. The objective was to explore the impact of the parameters used for study design on the RATIO and to identify the most relevant to provide a simple method for sample size determination for Rasch modelling. METHODS: A large combination of parameters used for study design was simulated using a Monte Carlo method: variance of the latent trait, group effect, sample size per group, number of items and items difficulty parameters. A linear regression model explaining the RATIO and including all the former parameters as covariates was fitted. RESULTS: The most relevant parameters explaining the ratio's variations were the number of items and the variance of the latent trait (R2 = 99.4%). CONCLUSIONS: Using the classical sample size formula adjusted with the proposed RATIO can provide a straightforward and reliable formula for sample size computation for 2-group comparison of PRO data using Rasch models.
Référence
BMC Med Res Methodol. 2014 Jul 5;14:87