Fiche publication
Date publication
novembre 2019
Journal
European journal of human genetics : EJHG
Auteurs
Membres identifiés du Cancéropôle Est :
Mr DUFFOURD Yannis
Tous les auteurs :
Lemattre C, Imbert-Bouteille M, Gatinois V, Benit P, Sanchez E, Guignard T, Tran Mau-Them F, Haquet E, Rivier F, Carme E, Roubertie A, Boland A, Lechner D, Meyer V, Thevenon J, Duffourd Y, Rivière JB, Deleuze JF, Wells C, Molinari F, Rustin P, Blanchet P, Geneviève D
Lien Pubmed
Résumé
Early infantile epileptic encephalopathy (EIEE) is a heterogeneous group of severe forms of age-related developmental and epileptic encephalopathies with onset during the first weeks or months of life. The interictal electroencephalogram (EEG) shows a "suppression burst" (SB) pattern. The prognosis is usually poor and most children die within the first two years or survive with very severe intellectual disabilities. EIEE type 3 is caused by variants affecting function, in SLC25A22, which is also responsible for epilepsy of infancy with migrating focal seizures (EIMFS). We report a family with a less severe phenotype of EIEE type 3. We performed exome sequencing and identified two unreported variants in SLC25A22 in the compound heterozygous state: NM_024698.4: c.[813_814delTG];[818 G>A] (p.[Ala272Glnfs*144];[Arg273Lys]). Functional studies in cultured skin fibroblasts from a patient showed that glutamate oxidation was strongly defective, based on a literature review. We clustered the 18 published patients (including those from this family) into three groups according to the severity of the SLC25A22-related disorders. In an attempt to identify genotype-phenotype correlations, we compared the variants according to the location depending on the protein domains. We observed that patients with two variants located in helical transmembrane domains presented a severe phenotype, whereas patients with at least one variant outside helical transmembrane domains presented a milder phenotype. These data are suggestive of a continuum of disorders related to SLC25A22 that could be called SLC25A22-related disorders. This might be a first clue to enable geneticists to outline a prognosis based on genetic molecular data regarding the SLC25A22 gene.
Mots clés
Adolescent, Base Sequence, Child, Child, Preschool, Electroencephalography, Exome, Female, Fibroblasts, Genetic Association Studies, methods, Genetic Predisposition to Disease, genetics, Humans, Male, Mitochondrial Membrane Transport Proteins, genetics, Pedigree, Phenotype, Skin, Spasms, Infantile, genetics
Référence
Eur J Hum Genet. 2019 11;27(11):1692-1700