Fiche publication


Date publication

janvier 2022

Journal

Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie

Auteurs

Membres identifiés du Cancéropôle Est :
Pr CHENARD Marie-Pierre , Dr DULUC Isabelle , Dr FREUND Jean-Noël , Dr GROSS Isabelle , Pr ROHR Serge , Pr BRIGAND Cécile


Tous les auteurs :
Delhorme JB, Bersuder E, Terciolo C, Vlami O, Chenard MP, Martin E, Rohr S, Brigand C, Duluc I, Freund JN, Gross I

Résumé

Most patients affected with colorectal cancers (CRC) are treated with 5-fluorouracil (5-FU)-based chemotherapy but its efficacy is often hampered by resistance mechanisms linked to tumor heterogeneity. A better understanding of the molecular determinants involved in chemoresistance is critical for precision medicine and therapeutic progress. Caudal type homeobox 2 (CDX2) is a master regulator of intestinal identity and acts as tumor suppressor in the colon. Here, using a translational approach, we examined the role of CDX2 in CRC chemoresistance. Unexpectedly, we discovered that the prognosis value of CDX2 for disease-free survival of patients affected with CRC is lost upon chemotherapy and that CDX2 expression enhances resistance of colon cancer cells towards 5-FU. At the molecular level, we found that CDX2 expression correlates with higher levels of genes regulating the bioavailability of 5-FU through efflux (ABCC11) and catabolism (DPYD) in patients affected with CRC and CRC cell lines. We further showed that CDX2 directly regulates the expression of ABCC11 and that the inhibition of ABCC11 improves 5-FU-sensitivity of CDX2-expressing colon cancer cells. Thus, this study illustrates how biological functions are hijacked in CRC cells and reveals the therapeutic interest of CDX2/ABCC11/DPYD to improve systemic chemotherapy in CRC.

Mots clés

ABCC11, Biomarker, Chemoresistance, DPD, Heterogeneity

Référence

Biomed Pharmacother. 2022 Jan 17;147:112630