Fiche publication
Date publication
février 2022
Journal
Diagnostics (Basel, Switzerland)
Auteurs
Membres identifiés du Cancéropôle Est :
Pr MARESCAUX Jacques
Tous les auteurs :
Knospe L, Gockel I, Jansen-Winkeln B, Thieme R, Niebisch S, Moulla Y, Stelzner S, Lyros O, Diana M, Marescaux J, Chalopin C, Köhler H, Pfahl A, Maktabi M, Park JH, Yang HK
Lien Pubmed
Résumé
Innovations and new advancements in intraoperative real-time imaging have gained significant importance in the field of gastric cancer surgery in the recent past. Currently, the most promising procedures include indocyanine green fluorescence imaging (ICG-FI) and hyperspectral imaging or multispectral imaging (HSI, MSI). ICG-FI is utilized in a broad range of clinical applications, e.g., assessment of perfusion or lymphatic drainage, and additional implementations are currently investigated. HSI is still in the experimental phase and its value and clinical relevance require further evaluation, but initial studies have shown a successful application in perfusion assessment, and prospects concerning non-invasive tissue and tumor classification are promising. The application of machine learning and artificial intelligence technologies might enable an automatic evaluation of the acquired image data in the future. Both methods facilitate the accurate visualization of tissue characteristics that are initially indistinguishable for the human eye. By aiding surgeons in optimizing the surgical procedure, image-guided surgery can contribute to the oncologic safety and reduction of complications in gastric cancer surgery and recent advances hold promise for the application of HSI in intraoperative tissue diagnostics.
Mots clés
fluorescence imaging (FI), hyperspectral imaging (HSI), image-guided surgery, indocyanine green (ICG), innovative intraoperative imaging
Référence
Diagnostics (Basel). 2022 Feb 16;12(2):