Fiche publication


Date publication

mars 2022

Journal

International journal of computer assisted radiology and surgery

Auteurs

Membres identifiés du Cancéropôle Est :
Pr WEMMERT Cédric


Tous les auteurs :
Pantovic A, Ren X, Wemmert C, Ollivier I, Essert C

Résumé

Stereoelectroencephalography (SEEG) is a minimally invasive surgical procedure, used to locate epileptogenic zones. An accurate identification of the metallic contacts recording the SEEG signal is crucial to ensure effectiveness of the upcoming treatment. However, due to the presence of metal, post-operative CT scans contain strong streak artefacts that interfere with deep learning segmentation algorithms and require a lot of training data to distinguish from actual contacts. We propose a method to generate synthetic data and use them to train a neural network to precisely locate SEEG electrode contacts.

Mots clés

Data augmentation, Epilepsy, Radon transform, Segmentation, Sinogram, Stereoelectroencephalography

Référence

Int J Comput Assist Radiol Surg. 2022 Mar 11;: