Fiche publication


Date publication

février 2015

Journal

Nucleic acids research

Auteurs

Membres identifiés du Cancéropôle Est :
Dr ROMBY Pascale


Tous les auteurs :
Nitzan M, Fechter P, Peer A, Altuvia Y, Bronesky D, Vandenesch F, Romby P, Biham O, Margalit H

Résumé

Cells adapt to environmental changes by efficiently adjusting gene expression programs. Staphylococcus aureus, an opportunistic pathogenic bacterium, switches between defensive and offensive modes in response to quorum sensing signal. We identified and studied the structural characteristics and dynamic properties of the core regulatory circuit governing this switch by deterministic and stochastic computational methods, as well as experimentally. This module, termed here Double Selector Switch (DSS), comprises the RNA regulator RNAIII and the transcription factor Rot, defining a double-layered switch involving both transcriptional and post-transcriptional regulations. It coordinates the inverse expression of two sets of target genes, immuno-modulators and exotoxins, expressed during the defensive and offensive modes, respectively. Our computational and experimental analyses show that the DSS guarantees fine-tuned coordination of the inverse expression of its two gene sets, tight regulation, and filtering of noisy signals. We also identified variants of this circuit in other bacterial systems, suggesting it is used as a molecular switch in various cellular contexts and offering its use as a template for an effective switching device in synthetic biology studies.

Mots clés

Blotting, Northern, Blotting, Western, Gene Regulatory Networks, Genes, Bacterial, Models, Theoretical, Staphylococcus aureus, genetics, Stochastic Processes

Référence

Nucleic Acids Res.. 2015 Feb 18;43(3):1357-69