Fiche publication


Date publication

septembre 2022

Journal

Advanced materials (Deerfield Beach, Fla.)

Auteurs

Membres identifiés du Cancéropôle Est :
Dr MERTZ Damien


Tous les auteurs :
Chowrira B, Kandpal L, Lamblin M, Ngassam F, Kouakou CA, Zafar T, Mertz D, Vileno B, Kieber C, Versini G, Gobaut B, Joly L, Ferté T, Monteblanco E, Bahouka A, Bernard R, Mohapatra S, Garcia HP, Elidrissi S, Gavara M, Sternitzky E, Da Costa V, Hehn M, Montaigne F, Choueikani F, Ohresser P, Lacour D, Weber W, Boukari S, Alouani M, Bowen M

Résumé

Recent theory and experiments have showcased how to harness quantum mechanics to assemble heat/information engines with efficiencies that surpass the classical Carnot limit. So far, this has required atomic engines that are driven by cumbersome external electromagnetic sources. Here, using molecular spintronics, we propose an implementation that is both electronic and autonomous. Our spintronic quantum engine heuristically deploys several known quantum assets by having a chain of spin qubits formed by the paramagnetic Co centers of phthalocyanine (Pc) molecules electronically interact with electron-spin selecting Fe/C interfaces. Density functional calculations reveal that transport fluctuations across the interface can stabilize spin coherence on the Co paramagnetic centers, which host spin flip processes. Across vertical molecular nanodevices, we measure enduring dc current generation, output power above room temperature, two quantum thermodynamical signatures of the engine's processes, and a record 89% spin polarization of current across the Fe/C interface. It is crucially this electron spin selection that forces, through demonic feedback and control, charge current to flow against the built-in potential barrier. Further research into spintronic quantum engines, insight into the quantum information processes within spintronic technologies, and retooling the spintronic-based information technology chain, could help accelerate the transition to clean energy. This article is protected by copyright. All rights reserved.

Mots clés

energy harvesting, molecules, quantum physics, quantum thermodynamics, spintronics

Référence

Adv Mater. 2022 09 30;:e2206688