Fiche publication
Date publication
août 2013
Auteurs
Membres identifiés du Cancéropôle Est :
Pr BASTIE Jean-Noël
,
Dr DELVA Laurent
,
Dr AUCAGNE Romain
Tous les auteurs :
Lagrange B, Martin RZ, Droin N, Aucagne R, Paggetti J, Largeot A, Itzykson R, Solary E, Delva L, Bastie JN
Lien Pubmed
Résumé
The differentiation of human peripheral blood monocytes into macrophages can be reproduced ex vivo by culturing the cells in the presence of colony-stimulating factor 1 (CSF1). Using microarray profiling to explore the role of microRNAs (miRNAs), we identified a dramatic decrease in the expression of the hematopoietic specific miR-142-3p. Up- and down-regulation of this miRNA in primary human monocytes altered CSF1-induced differentiation of monocytes, as demonstrated by changes in the expression of the cell surface markers CD16 and CD163. One of the genes whose expression is repressed by miR-142-3p encodes the transcription factor Early Growth Response 2 (Egr2). In turn, Egr2 associated with its co-repressor NGFI-A (Nerve Growth Factor-Induced gene-A) binding protein 2 (NAB2) binds to the pre-miR-142-3p promoter to negatively regulate its expression. Interestingly, the expression of miR-142-3p is abnormally low in monocytes from patients with the most proliferative forms of chronic myelomonocytic leukemia (CMML), and miR-142-3p re-expression in CMML dysplastic monocytes can improve their differentiation potential. Altogether, miR-142-3p which functions in a molecular circuitry with Egr2 is an actor of CSF1-induced differentiation of human monocytes whose expression could be altered in CMML.
Référence
Biochim Biophys Acta. 2013 Aug;1833(8):1936-46