Fiche publication
Date publication
mars 2024
Journal
European urology oncology
Auteurs
Membres identifiés du Cancéropôle Est :
Dr ESCHWEGE Pascal
,
Pr LANG Hervé
,
Pr ROY Catherine
,
Dr TRICARD Thibault
Tous les auteurs :
Couchoux T, Jaouen T, Melodelima-Gonindard C, Baseilhac P, Branchu A, Arfi N, Aziza R, Barry Delongchamps N, Bladou F, Bratan F, Brunelle S, Colin P, Correas JM, Cornud F, Descotes JL, Eschwege P, Fiard G, Guillaume B, Grange R, Grenier N, Lang H, Lefèvre F, Malavaud B, Marcelin C, Moldovan PC, Mottet N, Mozer P, Potiron E, Portalez D, Puech P, Renard-Penna R, Roumiguié M, Roy C, Timsit MO, Tricard T, Villers A, Walz J, Debeer S, Mansuy A, Mège-Lechevallier F, Decaussin-Petrucci M, Badet L, Colombel M, Ruffion A, Crouzet S, Rabilloud M, Souchon R, Rouvière O
Lien Pubmed
Résumé
Prostate multiparametric magnetic resonance imaging (MRI) shows high sensitivity for International Society of Urological Pathology grade group (GG) ≥2 cancers. Many artificial intelligence algorithms have shown promising results in diagnosing clinically significant prostate cancer on MRI. To assess a region-of-interest-based machine-learning algorithm aimed at characterising GG ≥2 prostate cancer on multiparametric MRI.
Mots clés
Artificial intelligence, Magnetic resonance imaging, Prostate biopsy, Prostate cancer, Radiomics
Référence
Eur Urol Oncol. 2024 03 15;: