Fiche publication


Date publication

avril 2024

Journal

Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology

Auteurs

Membres identifiés du Cancéropôle Est :
Dr BEFORT Katia


Tous les auteurs :
Schoukroun F, Befort K, Bourdy R

Résumé

Excessive consumption of palatable foods that are rich in fats and sugars has contributed to the increasing prevalence of obesity worldwide. Similar to addictive drugs, such foods activate the brain's reward circuit, involving mesolimbic dopaminergic projections from the ventral tegmental area (VTA) to the nucleus accumbens (NAc) and the prefrontal cortex. Neuroadaptations occurring in this circuit are hypothesized to contribute to uncontrolled consumption of such foods, a common feature of most of eating disorders and obesity. The rostromedial tegmental nucleus (RMTg), also named tail of the VTA (tVTA), is an inhibitory structure projecting to the VTA and the lateral hypothalamus (LH), two key brain regions in food intake regulation. Prior research has demonstrated that the RMTg responds to addictive drugs and influences their impact on mesolimbic activity and reward-related behaviors. However, the role of the RMTg in food intake regulation remains largely unexplored. The present study aimed to investigate the role of the RMTg and its projections to the VTA and the LH in regulating food intake in rats. To do so, we examined eating patterns of rats with either bilateral excitotoxic lesions of the RMTg or specific lesions of RMTg-VTA and RMTg-LH pathways. Rats were exposed to a 6-week 'free choice high-fat and high-sugar' diet, followed by a 4-week palatable food forced abstinence and a 24 h re-access period. Our results indicate that an RMTg-VTA pathway lesion increases fat consumption following 6 weeks of diet and at time of re-access. The RMTg-LH pathway lesion produces a milder effect with a decrease in global calorie intake. These findings suggest that the RMTg influences palatable food consumption and relapse through its projections to the VTA.

Référence

Neuropsychopharmacology. 2024 04 3;: