Fiche publication
Date publication
mai 2024
Journal
Brain : a journal of neurology
Auteurs
Membres identifiés du Cancéropôle Est :
Dr DEVYS Didier
,
Dr TORA Laszlo
Tous les auteurs :
Harel T, Spicher C, Scheer E, Buchan JG, Cech J, Folland C, Frey T, Holtz AM, Innes AM, Keren B, Macken WL, Marcelis C, Otten CE, Paolucci SA, Petit F, Pfundt R, Pitceathly RDS, Rauch A, Ravenscroft G, Sanchev R, Steindl K, Tammer F, Tyndall A, Devys D, Vincent SD, Elpeleg O, Tora L
Lien Pubmed
Résumé
Deubiquitination is critical for the proper functioning of numerous biological pathways such as DNA repair, cell cycle progression, transcription, signal transduction, and autophagy. Accordingly, pathogenic variants in deubiquitinating enzymes (DUBs) have been implicated in neurodevelopmental disorders (ND) and congenital abnormalities. ATXN7L3 is a component of the DUB module of the SAGA complex, and two other related DUB modules, and serves as an obligate adaptor protein of 3 ubiquitin-specific proteases (USP22, USP27X or USP51). Through exome sequencing and GeneMatching, we identified nine individuals with heterozygous variants in ATXN7L3. The core phenotype included global motor and language developmental delay, hypotonia, and distinctive facial characteristics including hypertelorism, epicanthal folds, blepharoptosis, a small nose and mouth, and low-set posteriorly rotated ears. In order to assess pathogenicity, we investigated the effects of a recurrent nonsense variant [c.340C>T; p.(Arg114Ter)] in fibroblasts of an affected individual. ATXN7L3 protein levels were reduced, and deubiquitylation was impaired, as indicated by an increase in histone H2Bub1 levels. This is consistent with the previous observation of increased H2Bub1 levels in Atxn7l3-null mouse embryos, which have developmental delay and embryonic lethality. In conclusion, we present clinical information and biochemical characterization supporting ATXN7L3 variants in the pathogenesis of a rare syndromic ND.
Mots clés
ATXN7L3, SAGA complex, deubiquitination, developmental delay, exome sequencing, intellectual disability
Référence
Brain. 2024 05 16;: