Fiche publication
Date publication
juillet 2024
Journal
Physics and imaging in radiation oncology
Auteurs
Membres identifiés du Cancéropôle Est :
Dr BESSIERES Igor
Tous les auteurs :
Texier B, Hémon C, Queffélec A, Dowling J, Bessieres I, Greer P, Acosta O, Boue-Rafle A, de Crevoisier R, Lafond C, Castelli J, Barateau A, Nunes JC
Lien Pubmed
Résumé
Magnetic resonance imaging (MRI)-to-computed tomography (CT) synthesis is essential in MRI-only radiotherapy workflows, particularly through deep learning techniques known for their accuracy. However, current supervised methods are limited to specific center's learnings and depend on registration precision. The aim of this study was to evaluate the accuracy of unsupervised and supervised approaches in the context of prostate MRI-to-CT generation for radiotherapy dose calculation.
Mots clés
Perceptual loss, Synthetic CT, Unsupervised learning, cGAN
Référence
Phys Imaging Radiat Oncol. 2024 07;31:100612