Fiche publication


Date publication

septembre 2024

Journal

International journal of molecular sciences

Auteurs

Membres identifiés du Cancéropôle Est :
Pr PIOT Olivier , Dr TERRYN Christine


Tous les auteurs :
Ksovreli M, Kachlishvili T, Skhvitaridze M, Nadaraia L, Goliadze R, Kamashidze L, Zurabiani K, Batsatsashvili T, Kvachantiradze N, Gverdtsiteli M, Kantaria T, Piot O, Courageot MP, Terryn C, Tchelidze P, Katsarava R, Kulikova N

Résumé

Our research explores leucine-based pseudo-proteins (LPPs) for advanced wound dressings, focusing on their effects on wound healing in an in vitro model. We assessed three types of LPP films for their ability to enhance wound closure rates and modulate cytokine production. They all significantly improved wound closure compared to traditional methods, with the 8L6 and copolymer films showing the most pronounced effects. Notably, the latter exhibited an optimal cytokine profile: an initial burst of pro-inflammatory TNF-α, followed by a controlled release of IL-6 during the proliferative phase and a significant increase in anti-inflammatory IL-10 during remodeling. This balanced cytokine response suggests that the copolymer film not only accelerates wound closure but also supports a well-regulated healing process, potentially reducing fibrosis and abnormal scarring, underscoring the potential of copolymer LPPs as advanced wound dressing materials. Future research will aim to elucidate the specific signaling pathways activated by the copolymer LPP to better understand its mechanism of action. Overall, LPP films offer a promising approach to improving wound care and could lead to more effective treatments for complex wounds.

Mots clés

RAW264.7, cell proliferation and migration, leucine-based pseudo-proteins (LPPs), primary mouse skin fibroblasts, wound healing

Référence

Int J Mol Sci. 2024 09 6;25(17):