Fiche publication
Date publication
décembre 2024
Journal
Nanoscale
Auteurs
Membres identifiés du Cancéropôle Est :
Dr CHARBONNIERE Loïc
Tous les auteurs :
Kayyil Veedu M, Lavilley G, Sy M, Goetz J, Charbonnière LJ, Wenger J
Lien Pubmed
Résumé
Lanthanide nanoparticles (LnNPs) feature sharp emission lines together with millisecond emission lifetimes which make them promising luminescent probes for biosensing and bioimaging. Although LnNPs are attracting much interest, their photoluminescence properties at the single nanoparticle level remain largely unexplored. Here, we employ fluorescence correlation spectroscopy (FCS) and photoluminescence burst analysis to investigate the photodynamics of Sm- and Eu-based LnNPs with single nanoparticle sensitivity and microsecond resolution. By recording the photoluminescence intensity and the number of contributing LnNPs, we compute the photoluminescence brightness per individual nanoparticle and estimate the actual number of emitting centers per nanoparticle. Our approach overcomes the challenges associated with ensemble-averaged techniques and provides insights into LnNP photodynamics. Moreover, we demonstrate our microscope's ability to detect and analyze LnNPs at the single nanoparticle level, monitoring both photoluminescence brightness and burst duration. These findings expand our understanding of LnNPs and pave the way for advanced biosensing applications at the single nanoparticle level.
Référence
Nanoscale. 2024 12 17;: