Fiche publication
Date publication
janvier 2025
Journal
European journal of nuclear medicine and molecular imaging
Auteurs
Membres identifiés du Cancéropôle Est :
Pr VERGER Antoine
,
Dr BUND Caroline
Tous les auteurs :
Ahrari S, Zaragori T, Zinsz A, Hossu G, Oster J, Allard B, Al Mansour L, Bessac D, Boumedine S, Bund C, De Leiris N, Flaus A, Guedj E, Kas A, Keromnes N, Kiraz K, Kuijper FM, Maitre V, Querellou S, Stien G, Humbert O, Imbert L, Verger A
Lien Pubmed
Résumé
Radiomics-based machine learning (ML) models of amino acid positron emission tomography (PET) images have shown efficiency in glioma prediction tasks. However, their clinical impact on physician interpretation remains limited. This study investigated whether an explainable radiomics model modifies nuclear physicians' assessment of glioma aggressiveness at diagnosis.
Mots clés
Explainable machine learning, Glioma, Interpretability, Positron emission tomography, Radiomics
Référence
Eur J Nucl Med Mol Imaging. 2025 01 17;: