Fiche publication
Date publication
février 2025
Journal
Scientific reports
Auteurs
Membres identifiés du Cancéropôle Est :
Dr GINDRAUX Florelle
Tous les auteurs :
Galvez P, Ahmed Omar N, Siadous R, Durand M, Comperat L, Lafarge X, Gindraux F, Sentilhes L, Fricain JC, L'Heureux N, Fenelon M
Lien Pubmed
Résumé
Thanks to its unique biological properties, the human amniotic membrane (AM) has shown promising results for guided bone regeneration (GBR), but displays some limitations such as poor space-maintaining ability. This study thus aimed to develop a new amnion/chorion membrane (ACM), with better mechanical properties as well as comparable or improved biological properties for GBR. We first developed a new decellularization method of ACM (DL-ACM) which was validated by DNA staining and quantification, and its cytocompatibility was established in vitro. The thickness of DL-ACM was significantly increased over thirty-fivefold, and its tearing strength and compression strength significantly increased more than tenfold compared to the decellularized AM (DL-AM). In vivo, DL-ACM demonstrated its biocompatibility subcutaneously, and its osteogenic properties were compared to DL-AM and a gold standard membrane in a GBR defect model in rats. Micro-CT and histomorphometric analysis showed that DL-ACM significantly promoted early bone regeneration after 1 week and significantly increased bone regeneration compared to the empty defect and the gold standard membrane over time. In this study, we developed a simple and reproducible method to produce an acellular, non-cytotoxic, and biocompatible DL-ACM. This new membrane is as effective as AM to promote early bone regeneration while demonstrating better biomechanical properties.
Mots clés
Acellular scaffold, Amniochorionic membrane, Amnion-chorion, Decellularization, Guided bone regeneration, In vivo, Placental membranes
Référence
Sci Rep. 2025 02 14;15(1):5483