Fiche publication


Date publication

novembre 2024

Journal

European urology oncology

Auteurs

Membres identifiés du Cancéropôle Est :
Dr MOLIERE Sébastien


Tous les auteurs :
Molière S, Hamzaoui D, Ploussard G, Mathieu R, Fiard G, Baboudjian M, Granger B, Roupret M, Delingette H, Renard-Penna R

Résumé

Magnetic resonance imaging (MRI) plays a critical role in prostate cancer diagnosis, but is limited by variability in interpretation and diagnostic accuracy. This systematic review evaluates the current state of deep learning (DL) models in enhancing the automatic detection, localization, and characterization of clinically significant prostate cancer (csPCa) on MRI.

Mots clés

Artificial intelligence, Deep learning, Diagnostic accuracy, Magnetic resonance imaging, Prostate cancer, Systematic review

Référence

Eur Urol Oncol. 2024 11 14;: