Fiche publication
Date publication
novembre 2024
Journal
European urology oncology
Auteurs
Membres identifiés du Cancéropôle Est :
Dr MOLIERE Sébastien
Tous les auteurs :
Molière S, Hamzaoui D, Ploussard G, Mathieu R, Fiard G, Baboudjian M, Granger B, Roupret M, Delingette H, Renard-Penna R
Lien Pubmed
Résumé
Magnetic resonance imaging (MRI) plays a critical role in prostate cancer diagnosis, but is limited by variability in interpretation and diagnostic accuracy. This systematic review evaluates the current state of deep learning (DL) models in enhancing the automatic detection, localization, and characterization of clinically significant prostate cancer (csPCa) on MRI.
Mots clés
Artificial intelligence, Deep learning, Diagnostic accuracy, Magnetic resonance imaging, Prostate cancer, Systematic review
Référence
Eur Urol Oncol. 2024 11 14;: