Fiche publication


Date publication

mars 2025

Journal

EMBO molecular medicine

Auteurs

Membres identifiés du Cancéropôle Est :
Dr DAVIDSON Irwin , Pr LANG Hervé , Dr LINDNER Véronique , Mme THIBAULT-CARPENTIER Christelle , Pr MALOUF Gabriel , Dr TRICARD Thibault


Tous les auteurs :
Helleux A, Davidson G, Lallement A, Hourani FA, Haller A, Michel I, Fadloun A, Thibault-Carpentier C, Su X, Lindner V, Tricard T, Lang H, Tannir NM, Davidson I, Malouf GG

Résumé

The oncogenic mechanisms by which TFE3 fusion proteins drive translocation renal cell carcinoma (tRCC) are poorly characterized. Here, we integrated loss and gain of function experiments with multi-omics analyses in tRCC cell lines and patient tumors. High nuclear accumulation of NONO-TFE3 or PRCC-TFE3 fusion proteins promotes their broad binding across the genome at H3K27ac-marked active chromatin, engaging a core set of M/E-box-containing regulatory elements to activate specific gene expression programs as well as promiscuous binding to active promoters to stimulate mRNA synthesis. Within the core program, TFE3 fusions directly regulate genes involved in ferroptosis resistance and oxidative phosphorylation metabolism (OxPhos). Consequently, human tRCC tumors display high OxPhos scores that persist during their epithelial to mesenchymal transition (EMT). We further show that tRCC tumor aggressiveness is related to their EMT and their associated enrichment in myofibroblast cancer-associated fibroblasts (myCAFs) that are both hallmarks of poor prognostic outcomes. We define tRCC as a novel metabolic subtype of renal cancer and provide unique insights into how broad genomic binding of TFE3 fusion proteins regulates OxPhos and ferroptosis resistance.

Mots clés

Cancer Associated Fibroblasts, Ferroptosis, Metabolism, RNA Synthesis, TFE3

Référence

EMBO Mol Med. 2025 03 27;: