Fiche publication
Date publication
novembre 2012
Auteurs
Membres identifiés du Cancéropôle Est :
Pr PHILIPPE Christophe
Tous les auteurs :
Vu PY, Toutain J, Cappellen D, Delrue MA, Daoud H, El Moneim AA, Barat P, Montaubin O, Bonnet F, Dai ZQ, Philippe C, Tran CT, Rooryck C, Arveiler B, Saura R, Briault S, Lacombe D, Taine L
Lien Pubmed
Résumé
Macrosomia, obesity, macrocephaly, and ocular abnormalities syndrome (MOMO syndrome) has been reported in only four patients to date. In these sporadic cases, no chromosomal or molecular abnormality has been identified thus far. Here, we report on the clinical, cytogenetic, and molecular findings in a child of healthy consanguineous parents suffering from MOMO syndrome. Conventional karyotyping revealed an inherited homozygous balanced reciprocal translocation (16;20)(q21;p11.2). Uniparental disomy testing showed bi-parental inheritance for both derivative chromosomes 16 and 20. The patient's oligonucleotide array-comparative genomic hybridization profile revealed no abnormality. From the homozygous balanced reciprocal translocation (16;20)(q21;p11.2), a positional cloning strategy, designed to narrow 16q21 and 20p11.2 breakpoints, revealed the disruption of a novel gene located at 20p11.23. This gene is now named LINC00237, according to the HUGO (Human Genome Organization) nomenclature. The gene apparently leads to the production of a non-coding RNA. We established that LINC00237 was expressed in lymphocytes of control individuals while normal transcripts were absent in lymphocytes of our MOMO patient. LINC00237 was not ubiquitously expressed in control tissues, but it was notably highly expressed in the brain. Our results suggested autosomal recessive inheritance of MOMO syndrome. LINC00237 could play a role in the pathogenesis of this syndrome and could provide new insights into hyperphagia-related obesity and intellectual disability.
Référence
Am J Med Genet A. 2012 Nov;158A(11):2849-56