Fiche publication
Date publication
juin 2015
Auteurs
Membres identifiés du Cancéropôle Est :
Pr LEHN Jean-Marie
Tous les auteurs :
Roy N, Bruchmann B, Lehn JM
Lien Pubmed
Résumé
Importing self-repair or self-healing features into inert materials is of great relevance to material scientists, since it is expected to eliminate the necessity of replenishing a damaged material. Be it material chemistry or more specifically polymer chemistry, such materials have attracted the imagination of both material scientists and chemists. A stroll down the memory lane 70 years back, this might have sounded utopian. However with the current progress in supramolecular chemistry and the emergence of dynamic covalent and non-covalent chemistries, novel perspectives have been opened up to materials science towards the development of dynamic materials (DYNAMATS) and in particular dynamic polymers (DYNAMERS), with the ability to produce such species by custom made designs. Chemistry took giant strides to gain control over the structure and features of materials and, besides basic progress, to apply it for tailor-making matter for applications in our daily life. In that applied perspective, materials science plays a paramount role in shaping our present and in contributing to a sustainable future. The goal is to develop materials, which would be dynamic enough to carry out certain functions as effectively as in biological systems with, however, the freedom to recruit the powers of chemistry on a wider scale, without the limitation imposed by life. Material scientists and in particular polymer chemists may build on chemistry, physics and biology for bridging the gap to develop dynamic materials presenting a wide range of novel functionalities and to convert dreams into reality. In this current review we will focus on developments in the area of dynamic polymers, as a class of dynamic materials presenting self-healing features and, more generally, the ability to undergo adaptation under the effect of physical and/or chemical agents, and thus function as adaptive polymers or ADAPTAMERS.
Référence
Chem Soc Rev. 2015 Jun 7;44(11):3786-807