Fiche publication
Date publication
juillet 2010
Auteurs
Membres identifiés du Cancéropôle Est :
Pr BARBERI-HEYOB Muriel
,
Dr FROCHOT Céline
,
Dr VANDERESSE Régis
,
Dr THOMAS Noémie
Tous les auteurs :
Thomas N, Pernot M, Vanderesse R, Becuwe P, Kamarulzaman E, Da Silva D, Francois A, Frochot C, Guillemin F, Barberi-Heyob M
Lien Pubmed
Résumé
The general strategy developed aims to favor the vascular effect of photodynamic therapy by targeting tumor vasculature. Since angiogenic endothelial cells represent an interesting target to potentiate this vascular effect, we previously described the conjugation of a photosensitizer to a peptide targeting neuropilins (NRPs) over-expressed specially in tumor angiogenic vessels and we recently characterized the mechanism of photosensitization-induced thrombogenic events. Nevertheless, in glioma-bearing nude mice, we demonstrated that the peptide moiety was degraded to various rates according to time after intravenous administration. In this study, new peptidases-resistant pseudopeptides were tested, demonstrating a molecular affinity for NRP-1 and NRP-2 recombinant chimeric proteins and devoid of affinity for VEGF receptor type 1 (Flt-1). To argue the involvement of NRP-1, MDA-MB-231 breast cancer cells were used, strongly over-expressing NRP-1 receptor. We evidenced a statistically significant decrease of the different peptides-conjugated photosensitizers uptake after RNA interference-mediated silencing of NRP-1. Peptides-conjugated photosensitizers allowed a selective accumulation into cells. In mice, no degradation was observed in plasma in vivo 4h after intravenous injection by MALDI-TOF mass spectrometry. This study draws attention to this potential problem with peptides, especially in the case of targeting strategies, and provides useful information for the future design of more stable molecules.
Référence
Biochem Pharmacol. 2010 Jul 15;80(2):226-35