N-terminal polyglutamine-containing fragments inhibit androgen receptor transactivation function.

Fiche publication


Date publication

décembre 2008

Auteurs

Membres identifiés du Cancéropôle Est :
Dr CERALINE Jocelyn


Tous les auteurs :
Schiffer NW, Ceraline J, Hartl FU, Broadley SA

Résumé

Abstract Several neurodegenerative diseases, including Kennedy's disease (KD), are associated with misfolding and aggregation of polyglutamine (polyQ)-expansion proteins. KD is caused by a polyQ-expansion in the androgen receptor (AR), a key player in male sexual differentiation. Interestingly, KD patients often show signs of mild-to-moderate androgen insensitivity syndrome (AIS) resulting from AR dysfunction. Here, we used the yeast Saccharomyces cerevisiae to investigate the molecular mechanism behind AIS in KD. Upon expression in yeast, polyQ-expanded N-terminal fragments of AR lacking the hormone binding domain caused a polyQ length-dependent growth defect. Interestingly, while AR fragments with 67 Q formed large, SDS-resistant inclusions, the most pronounced toxicity was observed upon expression of 102 Q fragments which accumulated exclusively as soluble oligomers in the 100-600 kDa range. Analysis using a hormone-dependent luciferase reporter revealed that full-length polyQ-expanded AR is fully functional in transactivation, but becomes inactivated in the presence of the corresponding polyQ-expanded N-terminal fragment. Furthermore, the greatest impairment of AR activity was observed upon interaction of full-length AR with soluble AR fragments. Taken together, our results suggest that soluble polyQ-containing fragments bind to full-length AR and inactivate it, thus providing insight into the mechanism behind AIS in KD and possibly other polyglutamine diseases, such as Huntington's disease.

Référence

Biol Chem. 2008 Dec;389(12):1455-66.