Gas Barrier, Rheological and Mechanical Properties of Immiscible Natural Rubber/Acrylonitrile Butadiene Rubber/Organoclay (NR/NBR/Organoclay) Blend Nanocomposites.
Fiche publication
Date publication
juin 2020
Journal
Materials (Basel, Switzerland)
Auteurs
Membres identifiés du Cancéropôle Est :
Dr ROUXEL Didier
Tous les auteurs :
Maria HJ, Thomas MG, Morreale M, La Mantia FP, Nzihou A, Joseph K, Rouxel D, Fernandes SCM, Kalarikkal N, Thomas S
Lien Pubmed
Résumé
In this paper, gas permeability studies were performed on materials based on natural rubber/acrylonitrile butadiene rubber blends and nanoclay incorporated blend systems. The properties of natural rubber (NR)/nitrile rubber (NBR)/nanoclay nanocomposites, with a particular focus on gas permeability, are presented. The measurements of the barrier properties were assessed using two different gases-O and CO-by taking in account the blend composition, the filler loading and the nature of the gas molecules. The obtained data showed that the permeability of gas transport was strongly affected by: (i) the blend composition-it was observed that the increase in acrylonitrile butadiene rubber component considerably decreased the permeability; (ii) the nature of the gas-the permeation of CO was higher than O; (iii) the nanoclay loading-it was found that the permeability decreased with the incorporation of nanoclay. The localization of nanoclay in the blend system also played a major role in determining the gas permeability. The permeability of the systems was correlated with blend morphology and dispersion of the nanoclay platelets in the polymer blend.
Mots clés
gas permeability, nanoclay, polymer blend
Référence
Materials (Basel). 2020 Jun 10;13(11):