Theoretical Design of New Grafted Molecules d-Glucosamine-Oxyresveratrol-Essential Amino Acids: DFT Evaluation of the Structure-Antioxidant Activity.

Fiche publication


Date publication

septembre 2024

Journal

ACS omega

Auteurs

Membres identifiés du Cancéropôle Est :
Dr ERNST Barbara


Tous les auteurs :
Hamadouche S, Merouani H, Aidat O, Ouddai N, Ernst B, Alam M, Benguerba Y

Résumé

In the pursuit of innovative high-performance materials suitable for antioxidant applications, the density functional theory was employed to design a series of compounds derived from small biodegradable organic molecules. This study involved grafting the negatively charged unit d-glucosamine (GleN) and essential amino acids onto the 3 and 4' carbons of the backbone of -2,4,3',5'-tetrahydroxystilbene (-OXY), respectively. The aim was to prevent -OXY degradation into the region and enhance its electronic and antioxidant properties. Theoretical calculations using DFT/PW91/TZP in water revealed that the designed biomolecules (GleN-OXY-AA) outperformed both free OXY units and essential amino acids in terms of antioxidant efficacy, as indicated by the bond dissociation energy (BDE) findings. Notably, GleN-OXY-Ile and GleN-OXY-Trp compounds exhibited an average BDE of 66.355 kcal/mol, translating to 1.82 times the activity of -OXY and 1.55 times the action of ascorbic acid (Vit C). AIM analysis demonstrated that the proposed biomaterials favored the formation of quasi-rings through intramolecular H···O hydrogen bonds, promoting π-electron delocalization and stabilization of radical, cationic, and anionic forms. Quantum calculations revealed the release of hydrogen atoms or electrons from sites of reduced electronegativity, visually identified by MEP maps and estimated by Hirshfeld atomic charges.

Référence

ACS Omega. 2024 09 3;9(35):37128-37140