Abnormal Wnt and PI3Kinase signaling in the malformed intestine of lama5 deficient mice.

Fiche publication


Date publication

janvier 2012

Auteurs

Membres identifiés du Cancéropôle Est :
Dr BAGNARD Dominique, Dr LEFEBVRE Olivier, Dr OREND Gertraud


Tous les auteurs :
Ritie L, Spenle C, Lacroute J, Bolcato-Bellemin AL, Lefebvre O, Bole-Feysot C, Jost B, Klein A, Arnold C, Kedinger M, Bagnard D, Orend G, Simon-Assmann P

Résumé

Laminins are major constituents of basement membranes and are essential for tissue homeostasis. Laminin-511 is highly expressed in the intestine and its absence causes severe malformation of the intestine and embryonic lethality. To understand the mechanistic role of laminin-511 in tissue homeostasis, we used RNA profiling of embryonic intestinal tissue of lama5 knockout mice and identified a lama5 specific gene expression signature. By combining cell culture experiments with mediated knockdown approaches, we provide a mechanistic link between laminin alpha5 gene deficiency and the physiological phenotype. We show that laminin alpha5 plays a crucial role in both epithelial and mesenchymal cell behavior by inhibiting Wnt and activating PI3K signaling. We conclude that conflicting signals are elicited in the absence of lama5, which alter cell adhesion, migration as well as epithelial and muscle differentiation. Conversely, adhesion to laminin-511 may serve as a potent regulator of known interconnected PI3K/Akt and Wnt signaling pathways. Thus deregulated adhesion to laminin-511 may be instrumental in diseases such as human pathologies of the gut where laminin-511 is abnormally expressed as it is shown here.

Référence

PLoS One. 2012;7(5):e37710