Triple Negative Breast Cancer: towards a more integrated approach

Renaud Seigneuric, Dr., PhD., HDR. Cancer and ADaptive Immune Response (CADIR) Team UMR 1231 Lipides, Nutrition, Cancer Faculté des Sciences de Santé, Dijon renaud.seigneuric@u-bourgogne.fr

Ensemble, dépassons le car

Concepts

Complex System

System

Boeing 747; 3.10⁶ pieces, HSP meeting, D.C.

Complicated System

- composed of a large number of
 interacting components
- its properties can be accurately predicted
- it is the sum of its parts
- Central organization

« Complicated is not Complex » [Nat. Biotech 1999]

Canadian gooses, Prostate Cancer Institute, Vancouver

Complex System

- displays properties are *NOT* predictable from a complete description of its components
- The whole is more than the sum of its parts
- Its elements can adapt and play different roles
- No element is essentiel (distributed system)
- auto-organization

Interaction / Regulation

Translational Research

Translational Research

Biomarkers

Oncology / Bioinformatics / Personalized Medicine

Omics

Signatures

Sampling

Biomarkers

- ~ 10¹⁴ cells
- ~ 200 cell types
- ~ 20.000 genes

~200.000 mARNs

- ~ 3.000 metabolites
- ~ 1.000.000 proteins (alt.splicing + PTM)

Variables

- Survival
- Diagnosis
- Treatment efficacy

DNA Microarrays

Microarrays

Solid support (glass, silicon wafer, nylon membrane) = Slide

- Molecular probes (cDNA, Oligos [25-65mers]) = detectors
 - **B** Printing probes on the slide

(presynthesized then deposited, synthesized in situ)

- Target isolation, reverse transcription and amplification
 - **G** Target Labeling
 - **6** Hybridizing
 - Scanning
 - 8 Analyses

Microarrays

- Underdeterminded problem:
- 1 DNA microarray has 20,000+ probe sets

This Affymetrix HG U133 Plus 2.0 microarray has 54,675 probe sets

Agliant

Breast Cancer

Breast Cancer in France

- In France, in 2017:
- ~59,000 / 400,000 new cancer cases
- ~12,000 / 150,000 cancer deaths

Classe d'âge	Incidence	Mortalité
[00 ; 14]	0	0
[15 ; 49]	11 135	856
[50 ; 64]	<u>19 034</u>	2 374
[65 ; 74]	15 180	2 620
[75 ; 84]	8 574	2 582
[85; ++]	5 045	3 451
Total	58 968	11 883

Breast Cancer

- Breast cancer is a heterogeneous disease with respect to:
 - cellular composition,
 - molecular alterations, and
 - <u>clinical</u> outcome
- Challenges:
 - Classification
 - Prognosis

Breast Cancer

- Main clinical parameters:
 - age, lymph node status, tumor size, histological grade
 - estrogen receptor [ER],
 - progesterone receptor [PR]
 - epidermal growth factor receptor 2 [HER2]

All of which are routinely used in the clinic to:

- Stratify (partitioning of) patients for prognostic predictions and
- to select treatments

« intrinsic » molecular subtypes [Perou et al Nature 2000]

65 surgical specimens of human breast tumours from 42 different individuals, using complementary DNA microarrays representing 8,102 human genes

letters to nature

Molecular portraits of human breast tumours

Charles M. Perou*†, Therese Sørlie†‡, Michael B. Eisen*, Matt van de Rijn§, Stefanie S. Jeffrey||, Christian A. Rees*, Jonathan R. Pollack¶, Douglas T. Ross¶, Hilde Johnsen‡, Lars A. Akslen#, Øystein Fluge☆, Alexander Pergamenschikov*, Cheryl Williams*, Shirley X. Zhu§, Per E. Lønning**, Anne-Lise Børresen-Dale‡, Patrick O. Brown¶†† & David Botstein*

X

Triple-Negative Breast Cancer (TNBC)

- Main clinical parameters:
 - age, lymph node status, tumor size, histological grade
 - estrogen receptor [ER-],
 - progesterone receptor [PR-]
 - epidermal growth factor receptor 2 [HER2-]

Currently:

- No validated biomarkers
- No approved targeted therapies

Questions:

- Can we better understand TNBC?
- Identify potential resistance biomarkers?

TNBC Subtypes

Subtyping Triple-Negative Breast Cancer

GO Terms/ Canonical Pathways

Basal-like 1

Cell Cycle DNA Replication Reactome G₂ Pathway RNA Polymerase ATR/ BRCA Pathway G₁ to S Cell Cycle

Basal-like 2

EGF Pathway NGF Pathway MET Pathway WNT β-catenin Pathway IGF1R Pathway Glycolysis/ Gluconeogenesis

Immunomodulatory

CTLA4 Pathway IL12 Pathway NK Cell Pathway Th1/Th2 Pathway IL7 Pathway Antigen Processing/ Presentation NFKB Pathway TNF Pathway T Cell Signal Transduction DC Pathway BCR Signaling Pathway NK Cell Mediated Cytotoxicity JAK/ STAT Signaling Pathway ATR/ BRCA Pathway

Lehman et al. JCI 2011

Subtyping Triple-Negative Breast Cancer

Seven (7) subtypes:

- basal-like 1,
- basal-like 2,
- immunomodulatory,
- luminal androgen receptor
- mesenchymal,
- mesenchymal stem-like,
- unstable

Lehman et al. JCI 2011

Concepts

- An integrative approach to TNBC
- Next steps?

Towards an integrative approach to TNBC

Approach

Wet-bench experiments

 TNBC cell lines culture: HCC70, HCC1937 et MDA-MB-231

Bioinformatics

 Download microarray data (e.g.: from GEO, TCGA)

٠

MTT viability tests after treatment (4 chemotherapies)

Proliferation kinetics/dynamics by impedance-metry, dose-response

QA/QC, Normalization, Batch-correction

٠

Find differentially expressed genes, GO, Pathway analyses

Treatments

 MTT tests on TNBC cell lines: TNBC cells are killed by untargeted agents

Α

Lignée	HCC70			HCC1937			MDA-MB-231		
Traitement	IC25	IC50	IC75	IC25	IC50	IC75	IC25	IC50	IC75
5-fluorouracyle (µM)	6,25	35	400	12,5	50	100	12,5	50	200
Cisplatine (µM)	1,5	5	10	1,25	7,5	20	1,25	5	20
Epirubicine (nM)	0,1	0,25	1	0,1	1	2	0,1	0,5	1,5
Taxotère (nM)	1	5	40	2,5	10	20	5	10	20

Treatments

• Dose-response kinetics of TNBC cell lines

HCC70 and MDA-MB-231 cell linces exhibit various responses

\mathbf{c}									
C	Traitement	5-fluorou	racyle	Cisplatine		Epirubicine		Taxotère	
	Lignée	IC50 (µM)	R ²	IC50 (µM)	R ²	IC50 (nM)	R ²	IC50 (nM)	R ²
	HCC70	100	0,984	3,16	1	0,447	1	2	1
	MDA-MB-231	28	0,95	3,98	0,696	0,355	0,781	11	0,902

Bioinformatics Pipeline

- Download Microarrays
- QA/QC
- Normalize data
- Correct for Batch effect
- Differential Expression (gene level)
- Differences in Pathways
- Map existing drugs
- Interpretation for treatment success/failure

Finding differentially expressed (genes and) pathways

Treatments

- Gene signatures (231 transcripts, FDR=10%),
- Gene Ontology analysis

Possible cell proliferation differences between survivor vs non-survivor TNBC patients

Pathways

Pathway Integration

Merged network (2172 nodes | 2541 edges) \int

8 pathways (557 nodes | 581 edges)

8 pathways (557 nodes | 581 edges)

Proteins + Drugs + miRNAs + TF

Testing Set (TCGA)

Overall Survival Kaplan-Meier Estimate

Descending Degree of Nodes

a a	CTL.Type	Degree	~	dia CTL.GeneID	name	CTL.proteinName	
gene			261	ENSG00000120907	ADRA 1A	Alpha-1A adrenergic receptor	
gene			242	ENSG00000133019	CHRM3	Muscarinic acetylcholine receptor M3	
gene			239	ENSG00000168539	CHRM1	Muscarinic acetylcholine receptor M1	
gene			230	ENSG00000149295	DRD2	D(2) dopamine receptor	
gene			226	ENSG0000072062	PRKACA	cAMP-dependent protein kinase catalytic s	subunit alpha
gene			224	ENSG00000169252	ADRB2	Beta-2 adrenergic receptor	
gene			219	ENSG00000181072	CHRM2	Muscarinic acetylcholine receptor M2	Calcium
gene			217	ENSG0000043591	ADRB1	Beta-1 adrenergic receptor	
gene			215	ENSG00000100030	MAPK1	Mitogen-activated protein kinase 1	Regulation
gene			214	ENSG00000170214	ADRA 1B	Alpha-1B adrenergic receptor	in the
gene			213	ENSG0000087586	AURKA	Aurora kinase A	
gene			213	ENSG00000137193	PIM1	Serine/threonine-protein kinase pim-1	Cardiac Cell
gene			211	ENSG00000184845	DRD1	D(1A) dopamine receptor	
gene			209	ENSG0000077150	NFKB2	ADDALD CHRM5 (ADCV9)	TP2A3
gene			209	ENSG00000109320	NFKB1	CASO2 PKIB PKIB	ADRA1A
gene			209	ENSG0000082701	GSK3B	RYR3 CHRM4 KCNJ3 GNG12 GJA3	(RGS9)
gene			206	ENSG00000171873	ADRA 1D	PRKARTB ANXA6 GNAQ CHICAD RGS18 PKIA ATP28	GJB5
gene			205	ENSG00000165092	ALDH1A1	ADRB2 RGS1(ADCY5) (SNO) (YWHAP	GJA5 CASO1 (RGS16)
gene			205	ENSG0000088832	FKBP 1A	VMHAB	GIALD CAMK2CIRRB1
gene			202	ENSG00000205268	PDE7A	ATP1B3 CALR GJD2 VWHAH ADCY6 KKNJ5 RGS1 Cell Cell Cell Cell Cell Cell Cell Cel	RB2/VVD(CHRMS)GRK6 LCBA3/ADCY4 GJC1 GNB1 PRKCE GNG8 GNG8 GNG8

Centrality / Hub theory

Testing Set (TCGA)

Overall Survival Kaplan-Meier Estimate

- Total Number of Approved Drugs: ~3,200
- Total Number of Approved Small Molecule Drugs: ~2,300

• Concepts

• An integrative approach to TNBC

			XW42.A		
			XW63	3,4	
				www.NC06	
THE	WORLD NI	EEDS B	ETTER HE	ALTH DA	TA
			AA30.1		
		NB40.3	XY20.1		PA

More integration

- Confidentiality
- Managed by an organization without any potential conflicts of interest
- Oualitative & quantitative
- Baseline value
- *i* Data quality
- Integrative framework

• S. De Almeida

Acknowledgements

• A. Plagos

- F. Ghiringhelli's Team
- S. Ladoire
- R. Boidot
- L. Arnould
- C. Evelo Maastricht University
 - M. Kurtmon

