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The Arp2/3 complex in branched actin networks

7 Subunits; initiates branching in the actin cytoskeleton
* Actin-related proteins 2 and 3 were name-giving

Actin polymerization in resulting networks generates forces

Driving cell motility, trafficking and cell division

Protrusion

Arp2 and Arp3
F-Actin nucleating

ArpC1 — ArpC5
Scaffolding?

Lamellipodium




Available structure data prior to 2020

Model derived from crystal structure,  ET density map, in vitro branch junction, Ambiguous fit
inactive, ~2-3 A resolution ~30 A resolution
New
“daughter”

'« filament

Fitting Interpretation
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Adapted from Robinson et al., 2001, doi.org/ 10.1126/science.1066333 Adapted from Rouiller et al., 2008, 10.1083/jcb.200709092



Improve the previously proposed branch junction model

* Needed: “high” resolution structure of the branch junction
* Achieve sufficient resolution to fit existing models unambiguously

* Describe structural changes between inactive Arp2/3
and the complex in its branch junction state

e Approach: Cryo-ET and subtomogram averaging
of branch junctions in lamellipodia
* Lamellipodia are thin enough to be accessibly to Cryo-ET
* Lamellipodia are easy to identify and high in branch junction content



Cryo-electron tomography of lamellipodia

Seed cells on Vitrify cells by Acquire projection
electron microscopy plunge freezing in images of lamellipodia
grids liquid ethane at different angles

Adapted from Weber et al., 2019, doi.org/10.3390/cells8010057
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Cryo-ET — identifying a target site




Cryo-ET — identifying a target site




Cryo-ET — identifying a target site




Cryo-ET — a tilt-series of a lamellipodium




Cryo-ET —a tomogram of a lamellipodium




Subtomogram averaging (STA) — general principle

NIH-3T3 fibroblast lamellipodium

X “{,"-‘\‘."" R R B

* Cryo-ET data contains
information on protein structure
but is quite noisy

* |f multiple instances of a protein
are found within a data set, they
can be aligned and averaged

* Averaging improves the
sighal-to-noise ratio and allows
for structure determination

Adapted from FiRler et al., 2020, doi.org/10.1038/s41467-020-20286-x



Subtomogram averaging (STA) — general principle




Actual pipeline

SerialEM

Warp and M

Relion

Map and Mask

SerialEM, CTFFIND4,
Tomoman IMOD, NovaCTF
Tilt series alignment,
3D CTF correction and
Tomogram reconstruction

Tilt series alignment parameters

Reference and particle positions

Map and Mask Angular Distribution

Adapted from FaRler et al., 2020, doi.org/10.1038/s41467-020-20286-x
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9A resolution in-cell structure of the branch junction

* Visibility of a-helices confirms
sub-nanometer resolution

 Structure is featured enough
for fitting molecular models
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Adapted from FaRler et al., 2020, doi.org/10.1038/s41467-020-20286-x



Interactions between Arp2/3 complex and the mother filament

Our model

 Not all subunits bind the
mother filament

Arp2/3 complex Mother filament
side facing mother filament

. . . Previous model
* The interaction surface is smaller

than previously postulated

M Mother filament monomer # @ Arp2 @ ArpCi @ ArpC3 O ArpCs
Arp3 ArpC2 @ ArpC4
Adapted from FiRler et al., 2020, doi.org/10.1038/s41467-020-20286-x



Conformational differences to the inactive complex

e 2 subcomplexes rotate
against each other:

* Arp2isrelocated to
the side of Arp3

* ArpC3 moves towards Arp2
and contacts it

Arp2/3 complex, side facing daughter filament

@ Arp2 @ ArpCi @ Apc3 O ArpCs
O Arp3 O ArpC2 @ ArpC4

Adapted from FiRler et al., 2020, doi.org/10.1038/s41467-020-20286-x



Cryo-ET captures vast amounts of contextual information

* Next to studying structures NIH-3T3 fibroblast lamellipodium

by subtomogram averaging
we can characterize
the occurring ultrastructural

assemblies

 Here: The actin filament
meshwork
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Ultrastructural analysis of filament networks

* Filament position and orientation
is crucial for function

e Coordinates of filaments and
reference structures, e.g., leading edge,
need to be determined

Tomogram position
ROI for subset
Cell edge




Vectorization of filaments in tomograms

* Deriving vector-based representations
from graphical representations
via automated tracking

* Automated quantitative analysis of
complete lamellipodia and
individual filament traits

distance
to edge



Quantification of vectorized filaments
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Adapted from Dimchev et al., 2021, doi.org/10.1016/].jsb.2021.107808

Template matching based tracking in Amira



Differential behavior of Arp2/3 subunit isoforms

* Two different ArpC5 subunit isoforms:
ArpC5 and ArpC5L

 Specifically, ArpC5 is
associated with more metastasis and
worse outcome in cancer
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Adapted from FaRler et al., 2020, doi.org/10.1038/s41467-020-20286-x



Morphology of isoform-specific knockout cells

e ArpCS5 knockout cells (C5KO) exhibit narrower lamellipodia
* ArpC5L knockout cells (C5LKO) exhibit wider lamellipodia

Adapted from FaRler et al., 2023, doi.org/10.1126/sciadv.add6495



Random migration of isoform-specific knockout cells

 Random migration speed of C5KO cells is reduced

 Random migration speed of C5LKO cells is comparable to WT

>0.99, ns.
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Adapted from FaRler et al., 2023, doi.org/10.1126/sciadv.add6495



Actin architecture of isoform-specific knockout cells

* Actin filaments in lamellipodia of C5KO run rather perpendicular to the protrusion-vector
* Actin filaments in lamellipodia of C5LKO run rather parallel to the protrusion-vector
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Adapted from FaRler et al., 2023, doi.org/10.1126/sciadv.add6495



Branch junction density is unaltered in both KO genotypes
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Adapted from FaRler et al., 2023, doi.org/10.1126/sciadv.add6495



Isoform-specific branch junction structures

* ArpC1 appears more stable in C5KO branch junctions
* ArpC1 appears less stable in C5LKO branch junctions
* ArpCl mediates interactions between the complex and other actin organizers

WT

C5KO #17 L CSLKO #16
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Adapted from FaRler et al., 2023, doi.org/10.1126/sciadv.add6495



Actin polymerization is reduced in lamellipodia of C5KO cells
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Adapted from FaRler et al., 2023, doi.org/10.1126/sciadv.add6495



Isoform-specific recruitment of actin filament elongators

* Ena/VASP family members are depleted at the leading edge in C5KO cells

WT 5 C5KO #17 Ny C5LKO #16

Dhallaidi AntibhAcdy Dhallaidin AntihAads Phallaidi Antihndyvy
Phalloidin Antibody Phalloidin Antibody Phalloidin Antibody

Adapted from FaRler et al., 2023, doi.org/10.1126/sciadv.add6495



C5KO and C5LKO phenotypes depend on filament elongators

Ena/VASP/Mena knock-out (EVM)
- N C5KO . C5LKO

EVM C5KO #7 EVM C5KO #10 EVM C5KO #13 EVM C5LKO #1 EVM C5LKO #2 EVM C5LKO #5

Phalloidin

>0.9999
>0.9999
>0.9999
>0.9999
>0.9999
>0.9999

g
o

—_
(6)}
1
o
%

®
=
®

X
x x
x
= x ®
xxx Ky x% x
x bk’ X%y n ¥ % 34
*
L 0 xxxxx = = g ® “f"
U x i ® *
£3 241 357 YR L % x — i = ——i—
4 ! . R x * xEX xx R‘ 3“
B—

3 - =t - 1”— L35 PR A1
XRxeH _gT'H_x % ,s-!-r" EE® FRxEEX
* xg: “,‘:xx * » ¥
=

Lamellipodium Width (um)
o

0.51
0.0 - - - . . . .
EVM EVM EVM EVM EVM EVM EVM
C5KO C5KO C5KO C5LKO C5LKO C5LKO
#7 #10 #13 #1 #2 #5

Adapted from FaRler et al., 2023, doi.org/10.1126/sciadv.add6495



ArpC5 isoforms affect lamellipodia and cell migration across scales

Lamellipodium Branch Junction Actin
Ultrastructure Structure

Cell Morphology

Polymerization

C5KO #17 25, C5LKO #16 bleaching _ WT C5KO #17 C5LKO #16
' " * 7

* |soform differ in distinct recruitment of filament elongators, which then cause the
observed phenotypes

Adapted from FaRler et al., 2023, doi.org/10.1126/sciadv.add6495
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Directional Microtubule arrays
are central for persistent directional cell migration
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Adapted from VaidZiulyté et al., 2022, doi.org/10.7554/eLife.69229



Directional Golgi-derived Microtubule arrays
are central for persistent directional cell migration
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How are directional Microtubule arrays organized at the Golgi?

Golgi-derived microtubules

Centrosomal microtubules
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Observation: Microtubule nucleation and elongation at the Golgi
is spatially separated
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Nucleation
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How could spatial separation of nucleation and elongation
support direction Microtubule growth?

Machinery

Models for the formation

distribution

of directional MT arrays
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What do we need to understand array formation at the Golgi?

* Microtubule length and positioning at different states during their
alignment

-> Cryo-ET and ultrastructural analysis

* MAP quantity and distribution on the Microtubules during the
different states of alignment

-> Subtomogram averaging for identification of MAPs



Microtubule organization at the Golgi: General approach

i W \ ﬂ

Tiltseries Acquisition

Processing
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Lamella preparation by focused ion beam milling (FIB)

Adapted from Schaffer et al., 2015, doi/10.21769/bioprotoc.1575
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